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BIO-C3 overview  

The importance of biodiversity for ecosystems on land has long been acknowledged. In 
contrast, its role for marine ecosystems has gained less research attention. The overarching 
aim of BIO-C3 is to address biodiversity changes, their causes, consequences and possible 
management implications for the Baltic Sea. Scientists from 7 European countries and 13 
partner institutes are involved. Project coordinator is the GEOMAR Helmholtz Centre for 
Ocean Research Kiel, Germany, assisted by DTU Aqua, National Institute of Aquatic 
Resources, Technical University of Denmark. 
 
Why is Biodiversity important? 
 
An estimated 130 animal and plant species go extinct every day. In 1992 the United Nations 
tried countering this process with the "Biodiversity Convention". It labeled biodiversity as 
worthy of preservation – at land as well as at sea. Biological variety should not only be 
preserved for ethical reasons: It also fulfils key ecosystem functions and provides ecosystem 
services. In the sea this includes healthy fish stocks, clear water without algal blooms but 
also the absorption of nutrients from agriculture. 
 
Biodiversity and BIO-C3  
 
To assess the role of biodiversity in marine ecosystems, BIO-C3 uses a natural laboratory: 
the Baltic Sea. The Baltic is perfectly suited since its species composition is very young, with 
current salt level persisting for only a few thousand years. It is also relatively species poor, 
and extinctions of residents or invasions of new species is therefore expected to have a 
more dramatic effect compared to species rich and presumably more stable ecosystems. 
 Moreover, human impacts on the Baltic ecosystem are larger than in most other sea 
regions, as this marginal sea is surrounded by densely populated areas. A further BIO-C3 
focus is to predict and assess future anthropogenic impacts such as fishing and 
eutrophication, as well as changes related to global (climate) change using a suite of models. 
 If talking about biological variety, it is important to consider genetic diversity as well, 
a largely neglected issue. A central question is whether important organisms such as 
zooplankton and fish can cope or even adapt on contemporary time scales to changed 
environmental conditions anticipated under different global change scenarios. 
 BIO-C3 aims to increase understanding of both temporal changes in biodiversity - on 
all levels from genetic diversity to ecosystem composition - and of the environmental and 
anthropogenic pressures driving this change. For this purpose, we are able to exploit 
numerous long term data sets available from the project partners, including on fish stocks, 
plankton and benthos organisms as well as abiotic environmental conditions. Data series are 
extended and expanded through a network of Baltic cruises with the research vessels linked 
to the consortium, and complemented by extensive experimental, laboratory, and modeling 
work.  
 
From science to management 
 
The ultimate BIO-C3 goal is to use understanding of what happened in the past to predict 
what will happen in the future, under different climate projections and management 
scenarios: essential information for resource managers and politicians to decide on the 
course of actions to maintain and improve the biodiversity status of the Baltic Sea for future 
generations. 
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1. Executive Summary BIOC3 Task 1.2 
 
This deliverable is part of WP 1, “Genetic adaptation and eco-physiology”, which investigates 
physiological tolerances and adaptive variation of key Baltic Sea species. The goal is to 
provide a general understanding of principal determinants of the distribution of species and 
populations, which ultimately determine the functional diversity and resilience of Baltic Sea 
ecosystems in response to environmental drivers. WP1 output will feed into WP2, 3 and 4, 
and is therefore crucial for the incorporation of evolutionary processes into future 
projections of the Baltic Sea. 
 
The Baltic Sea experienced large changes in community composition, yet it is largely 
unknown how these changes affect ecosystem functioning and how organisms are able to 
cope regarding physiological tolerance, preference and phenotypic plasticity in relation to 
environmental factors. To help answer these questions, a series of experiments and field 
studies have been performed for a range of different species including invasive/non-
indigenous ones at different positions in the food web.  
 
1.1 Zooplankton 
Zooplankton as a critical link for energy and nutritional transfer from phytoplankton to 
upper trophic levels as well as microzooplankton as another important part in the food web.  
Understanding physiological tolerance and zooplankton responses to predicted climate 
change in the Baltic Sea is a prerequisite for prediction of change in biodiversity. It was 
decided in this task to specifically look at the responses of offshore deep basin copepods 
(Acartia and Temora), as well as nearshore coastal copopods (Eurytemora). The results show 
that females of two different populations of Acartia longiremis originating from the Arkona 
and the Bornholm Basins displayed a broad salinity tolerance. Survival, feeding and egg 
production were strongly related to salinity and decreased with decreasing salinity. A salinity 
of 5 is critical to the population of A. longiremis with regard to the species vital rates. 
Although females were still able to produce some eggs at this salinity and survival was 
generally high, the rate of reproduction is likely too low to sustain populations in the Baltic 
and account for additional mortality by predation. At a salinity of 4 decreased feeding rates 
were not sufficient anymore to sustain reproduction and high survival of the species. This 
suggests that the species might not be robust enough for the anticipated worst-case changes 
in salinity values in the central Baltic Sea (e.g., Meier et al. (2012)).  
 
The comparison of survival to instantaneous changes in salinity suggests that population 
differences of A. longiremis exist in the physiological ability to respond to salinity changes. 
Female copepods originating from a salinity of 14-16 PSU in the Arkona Basin displayed a 
higher mortality to the reduction of salinity to 6 and 5 compared to females isolated at a 
salinity of 7.8 in the Bornholm Basin. However, female copepods from Bornholm that were 
acclimated to salinities of 6-4 before their response to instantaneous reduction in salinity 
was tested, displayed no differences in sensitivity to low salinity and had a broad salinity 
tolerance. Such difference between populations may be caused by the use of those females 
surviving the acclimation to low salinity. Nevertheless, more than 70% of females from 
Arkona Basin survived the instantaneous reduction of salinity from 16 to 5 after 5d of 
incubation. This indicates physiological and potentially genetic diversity exists in the Arkona 
population that allows the species to prosper in areas with lower salinity such as the 
Bornholm Basin. Investigations of reaction norms and common garden experiments are 
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required to evaluate this and will be continued in the project and reported in Deliverable 
1.3. 
 
Experiments with individuals of the coastal copepod (Eurytemora affinis) from three 
different areas in the Baltic sea (Askö, Pärnu Bay (part of Gulf of Riga) and Bothnian Bay) 
revealed how survival, development time and hatching success are affected by temperature, 
salinity and the interaction between these two environmental factors. Our results revealed 
the most beneficial and detrimental conditions, and the manner in which stress manifested 
on our endpoints. Depending on the degree of stress to which they were subjected, the 
optimum condition proved to be at an experimental temperature of 15°C and a salinity of 6, 
while the combination of high temperature with low salinity was the most detrimental (20°C 
and salinity 2). Osmotic and heat shock has been shown for E. affinis and has been 
associated with changes in protein expression. Even though copepods can adapt to osmotic 
stress by osmoregulation, it is costly in terms of energy and dependent on the degree of 
stress. Considering this, our findings for the survival analysis suggest that at 15°C and a 
salinity of 2 and at a temperature of 20°C and a salinity of 6 the degree of stress was 
intermediate between the lowest (15°C and salinity of 6) and highest (20°C and salinity of 2). 
The information gained from this study helps to get a better insight into functioning of the 
pelagic system and relevant responses in the higher trophic levels. 
 
Within the project a comprehensive micro- and mesozooplankton survey in the Lithuanian 
water has been conducted along at salinity gradient where largest change in pelagic patterns 
are expected, By providing the data on the zooplankton distribution within the Lithuanian 
coastal zone as an example, new knowledge on spatial and temporal zooplankton variability 
was achieved. 
 
1.2 Invasive/ non-indigenous species:  
Besides the comb jelly, Mnemiopsis leidyi, which is going to be dealt with in Task 2.3, the 
benthic fish species, the round goby (Neogobius melanostomus) was in the focus in our 
studies. This is because the introduction of an efficient predator, that has become a 
dominant element in many shallow water ecosystems, is likely to change the abundance of 
benthic organisms across many trophic levels; they could also modify the physical 
environment and thereby modulate ecosystem processes such as nutrient fluxes, primary 
production and sedimentation rates. As the species is not monitored data on its current 
spread and environmental tolerance is needed. The current range of the round goby 
observations is extensive, covering all major sub-basins of the Baltic Sea. The most recent 
observations appeared in the northern regions (Northern Baltic Proper, the Gulf of Bothnia 
and the Gulf of Finland) and on the eastern and western coasts of southern Sweden. 
Modelling results show that the distribution of the round goby is primarily related to local 
abiotic hydrological conditions (wave exposure). Furthermore, the probability of round goby 
occurrence was very high in areas in close proximity to large cargo ports. This links patterns 
of the round goby distribution in the Baltic Sea to shipping traffic and suggests that human 
factors together with natural environmental conditions are responsible for the spread of NIS 
at a regional sea scale. The hand line survey demonstrated the occurrence of round goby at 
the Baltic coastline of Schleswig Holstein. This revealed that the actual position of the 
invasion front is in the area of Kiel Bight. Results based on physiological tolerance and 
aerobic scope (AS, the difference between maximum and standard metabolic rate) 
measurements suggest that round goby has the capacity to occupy full oceanic 
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environments. Therefore, we predict that the species will continue to spread into the Baltic 
Sea-North sea transition zone, although the depressed physiological performance at high 
salinities might reduce its competitive potential as it approaches the North Sea. However, a 
pronounced high inter-individual variation in physiological performance at the highest 
salinities suggests that some individuals are able to offset the negative effects of high 
salinity, thus increasing the dispersal potential at the invasion front. According to our results, 
round and black goby do not compete for food.  
 
1.3 Fish and climate change 
What are potential drivers of change, which may affect survival, development, duration or 
(spatial) distribution of early life stages of cod, sprat and other commercially important key 
species? To address some of these complex processes we have selected, (partly preliminary) 
results from three case-studies. The objective of the first study was to compare the potential 
dimensions of egg buoyancy differences over several spawning seasons to assess general 
patterns. The objective of the second study was to investigate the importance of different 
oxygen and salinity conditions in relation to the available habitat determined by the eggs´ 
specific density. This is particularly interesting by comparing different hydrographic 
conditions which have recently been changed due to the Major Baltic Inflow (MBI) end of 
2014. The third case study is an example how to use field-derived egg diameter data in 
combination with buoyancy data and to link this with stock characteristics to improve the 
current estimation method of a spawning stock biomass.  
 
In sprat, egg survival is reduced due to critical temperature conditions, which act as the main 
driver. Being a “large” egg early (April) in the spawning season might not be optimal for 
sprat; being “small” at that time however, increases thermal survival conditions in a still 
tolerable environment concerning oxygen. This size-pattern turns into the other direction in 
the continuation of the spawning season in May/June. During late spring and early summer, 
the temperature of the water column above the halocline increases and the larger eggs now 
experience the warmer conditions (Nissling et al., 2003; Petereit et al., 2009) and thus are 
outside of critical tolerance limits. In cod, oxygen related egg survival is one of the key 
drivers determining egg abundances in different years. The new approach presented 
combines directly cod age structure with mean egg diameter and resulting mean density 
characteristics. This relationship is used as a feedback loop to model the number of 
effectively contributing females under known water density characteristics including the 
application of the well-accepted physiological tolerance limits for especially oxygen, 
temperature and salinity. 
 
Despite the great economic and ecological significance of sprat, relationships between 
feeding rates and temperature have not been investigated so far, although growth and 
recruitment success of sprat depend strongly on water temperature and food availability 
(MacKenzie & Köster 2004 Peck et al. 2012). Therefore, a basis for estimations of food 
densities required for optimal growth and good recruitment success is needed. Strong 
relationships between functional response and temperature in sprat dependent on the sizes 
of the fish could be shown. Since small sprat exhibit other environmental conditions than 
larger fish, which undertake daily vertical migrations associated with rapid changes in 
temperature, different functional response curves had to be fitted. Juvenile fish, however, 
are mainly abundant in the coastal zones or upper water layers with higher and more 
constant temperatures. Thus, they are able to feed faster at higher temperatures, whereas 
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larger individuals (adults) may reach their maximum possible biting rates at even lower 
temperatures. The proportion of feeding sprat in laboratory experiments was high at a 
temperature range from 20°C to 8°C. This corresponds to field observations made in spring 
and summer (Bernreuther 2007). However, at 5°C only 26.3% of sprat were feeding in our 
study. Stomach data from March 2013 (western Baltic Sea) revealed a similar rate of 25.24% 
at 1.07 ± 0.28 °C (unpublished data). This indicates that sprat is able to feed over the entire 
year even at relatively low temperatures, but benefits from higher water temperatures 
above 8°C. 
 
To investigate physiological boundaries that might emerge in juvenile sprat nursery habitats 
and can have consequences for growth performance, survival and recruitment of Baltic sprat 
the fate of different seasonal cohorts originating from the extended spawning season was 
studied. Two different simulation approaches modeling the growth of seasonal cohorts as a 
function of temperature were followed. In a backwards approach (1) the energy demand of 
seasonal cohorts was constructed. In a forward approach (2), the maintenance and optimum 
ration young sprat need during the seasons were calculated. To validate the model results 
four different years (2002, 2003, 2006, and 2007) were analyzed, where previous studies 
uncovered the temporal origin of autumn survivors by the microstructure analysis of otoliths 
(Baumann et al 2008, Günther et al 2012). The high total energy demand of earlier cohorts 
calculated in the backwards simulation implies that earlier cohorts need a higher amount of 
food. However, the prey concentration for maintenance is similar for early and late spawned 
cohorts. The reason for that is that early cohorts experience higher temperatures when they 
become larger. This increases snatching rates enabling these cohorts to eat more prey items 
at a similar prey concentration. Thus, maintenance concentrations of seasonal cohorts do 
not reflect the higher total demand of energy for earlier spawned cohorts. The strongest 
determinants for the concentration necessary to achieve maintenance ration are fish size 
and season (interaction between temperature and day length). In summer, when early 
cohorts enter the juvenile stage, necessary concentrations for larger individuals are smallest. 
In contrast, later spawned cohorts need larger concentrations at the same length as season 
progresses. At a first glance, the lower concentration needed for early cohorts in contrast to 
later cohorts are contradicting to the hypothesis that later cohorts have an advantage. 
However, individuals that are large early in the season rely on high prey concentrations for 
fulfill their maintenance for the rest of the growing season. In other words, the risk to starve 
before wintertime increases. Individuals that are born later in the season need a slightly 
higher prey concentration for maintenance. However the period they need to bypass before 
winter is reduced and thus, the risk to starve before winter. Being too large too early in the 
season is unprofitable, which might explain why the share of early cohorts in autumn caught 
survivors is of minor importance. The results of both simulation approaches underline the 
advantages of later born individuals in the juvenile life-stage of Baltic sprat. On the one hand 
the total energy demand is lower for late seasonal cohorts. On the other hand, early cohorts 
might suffer from the fact that they achieve large body size early in the season and rely on 
high prey concentrations for the rest of the growing season. Thus, early cohorts suffer during 
the juvenile stage in summer and their probability to survive until autumn is reduced. The 
interaction between temperature in nurseries and food demand of juvenile sprat determines 
the temporal origin of cohorts dominating autumn recruits. 
 
Cod is crucial for the Baltic Sea, with large ecosystem and socio-economic effects. Thus, an 
improved knowledge about factors affecting cod dynamics is critical. Concerning early life 
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stages, biochemically based estimates of larval nutritional condition and growth showed 
relationships with prey abundance and stock recruitment and are thus a promising tool to 
validate bottlenecks for recruitment success and determine “highest survival potential” from 
time series of zoo- and ichthyoplankton as was shown in Task 2.1 (see deliverable 2.1).  
 
Through the increased usage of fossil fuels and changed land use, the concentration of 
atmospheric carbon dioxide has been steadily rising since the onset of the industrial 
revolution. A portion of this CO2 is dissolving into the oceans causing a decrease in pH, e.g. 
acidifying a habitat that covers 2/3 of this planet. This process has been termed “the other 
CO2 problem” or ocean acidification. The experiments performed within in this Task 1.2 
clearly show that larvae of Western Baltic and coastal Barents Sea cod in 2014 are impacted 
by near future levels of ocean acidification. Our findings additionally suggest that even at ad 
libitum feeding, e.g. a richer energy budget that would allow for more efficient acid-base 
regulation, cod larvae cannot mediate the adverse effects of ocean acidification. However 
this apparently does not hold true for growth patterns. At high fed availability, larvae in 
ambient and end-of-century treatment show no apparent differences in standard length and 
dry weight by the end of the experiment (36 dph). Further these experimental results with 
cod larvae highlight the importance of investigating several responses to changes in the 
physiological environment in the same experiment, as in our case mortality and growth. 
Looked at separately the growth patterns of the high CO2 treatment could be interpreted as 
ocean acidification having a positive effect on cod larvae through increased growth; yet if 
one includes the detrimental increase in mortality it will most likely have several effects on 
the population dynamics of both cod populations.  

 
2. Introduction to BIOC3 Task 1.2  
 
Changes in community composition of nearly all trophic levels ranging from plankton to fish 
and benthos have been described in the Baltic Sea (Ojaveer et al. 2010). The underlying 
physiological tolerance (including capacity for acclimatization), preference and phenotypic 
plasticity in relation to environmental factors needs to be evaluated in selected planktonic, 
benthic and bentho-pelagic species considering different life stages in order to predict 
ecosystem-wide consequences of changing biodiversity under spatio-temporally varying 
drivers. In this task, physiological tolerance and preference have been experimentally 
studied in populations sampled across geographical (local to regional) scales and ecological 
gradients (e.g. salinity) in the field. The number of investigated populations and influencing 
drivers are varying among taxa. Focal species include copepods (Temora longicornis, Acartia 
spp. Eurytemora affinis), comb jellies (non-indigenous Mnemiopsis leidyi) and fish (the non-
indigenous round goby, Neogobius melanostomus; the native clupeid sprat (Sprattus 
sprattus); flounder (Platichthys flesus) and the key piscivorous fish cod, Gadus morhua. 
Focus was on critical life-stages for example fish egg and larval gobies, cod & herring (Clupea 
harengus) in relation to population origin and dispersal potential. 
 

3. Core Activities  
 
Major activities of task 1.2 “Documentation on key drivers and physiological tolerance 
limits for resident and invasive/non-indigenous species” per partner have been as follows: 
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P8 (KU-CORPI): contributes with field studies to analyse non-indigenous species (NIS) 
thresholds. Distribution ranges of meso- and microzooplankton species have been examined 
by conducting field sampling along an estuarine-marine salinity gradient and within vertically 
stratified water column, focusing on community level responses and non-indogenous 
zooplankton species occurrence along these gradients.  
 
P2 (DTU-Aqua): is responsible for physiological tolerance experiments on Baltic Sea offshore 
basin copepod species -Temora longicornis and Acartia longiremis. 
 
P4 (SU): is responsible for experiments to evaluate physiological tolerance to temperature 
and salinity change of a key copepod coastal, estuarine species in the Baltic Sea - Eurytemora 
affinis  
 
P1 (GEOMAR): is responsible for laboratory and field experiment on the comb jelly 
Mnemiopsis for studying tolerance levels. 
 
P6 (UT-EMI): is responsible for studying non-indigenous round goby using a field approach. 
The aim of the study was to quantify the effect of different anthropogenic and 
environmental drivers on the abundance and distribution of round goby.  
 
P7 (SYKE): is responsible for studying non-indigenous round goby (Neogobius 
melanostomus) populations in the Baltic Sea based on samples of round goby populations in 
five distinct locations representing most of the species range in the Baltic Sea: Guldborgsund 
(Denmark), Hel (Poland), Palanga (Lithuania) Muuga Bay (Estonia) and Mariehamn (Åland 
Islands).  
 
P2 (DTU-Aqua): is responsible for studies on non-indigenous round goby with an 
experimental approach aiming at determining the salinity tolerance to be able to predict 
invasion patterns in the Baltic Sea-North Sea transition zone. 
 
P3 (UHH- IHF): is responsible for performing experiments on temperature and salinity 
dependency of round goby egg development and functional response curves related to 
feeding for sprat. Energetically derived growth models were developed to analyze critical 
periods during juvenile sprat development and to study the importance of timing of the 
early juvenile stage for the potential growth performance in Baltic sprat. 
 
P1 (GEOMAR): is responsible for performing experiments on fish eggs buoyancy and 
studying responses of cod larvae from populations across geographical scales in 
experimental setups to evaluate potential drivers of change, which may affect survival, 
development duration or (spatial) distribution of early life stages of cod and other 
commercially important key species.  
 

4. Methods and results 

 
Major results are highlighted in section (5), detailed methods and results for each respective 
study are described in the Appendices. A list of appendices is given in section (8). All 
appendices are attached in section (9). 
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5. Scientific highlights 
 
5.1 Community level responses and invasive zooplankton species performance along 
gradients (for details see Appendix I) 
 
Two field surveys were conducted in 2014, representing 17 locations along a salinity gradient 
from the Nemunas river mouth to the Curonian lagoon to the western edge of the 
Lithuanian EEZ. Zooplankton and phytoplankton samples were collected within vertically 
stratified water columns above and below the halocline. The results have shown that 
zooplankton biomass increased from Nemunas River avandelta towards the Baltic Sea. 
Community shift from cladocerans in the Curonian Lagoon to rotifers in the Baltic Sea was 
observed. The most significant factors determining shifts in zooplankton community 
structure were salinity and chlorophyll-a concentration (Griniene et al. in prep.). 
Zooplankton biodiversity within the Lithuanian coastal zone was assessed from the samples 
collected in 2013, applying novel molecular techniques High-Throughput Sequencing (HTS) 
metabarcoding for the surveillance of plankton communities within the SE Baltic Sea coastal 
zone was applied. Results were compared to those from routine monitoring survey and 
morphological analyses. Four of five non-indigenous species (NIS) found in the samples were 
identified exclusively by metabarcoding. All of them are considered as invasive in the Baltic 
Sea with reported impacts on ecosystem and biodiversity. The proportion of identified NIS 
was significantly higher in metabarcoding results. Most of them were detected in the 
transitional zone between the Curonian Lagoon and the Baltic Sea, with the most variable 
salinities. In all three sampling locations there were sequences attributed with high 
confidence to the invasive polychaete Marenzelleria viridis. Based on the results of the 
earlier molecular identification and areal distribution assessment of three sibling 
Marenzelleria species within the Baltic Sea, only M. neglecta was unambiguously reported 
from the eastern and south-eastern regions (where Lithuanian cost belongs to). These 
findings contribute to the update of the current distributional maps of the species as well as 
national inventories of the non-indigenous organisms. However, further ground-truthing 
studies are required to verify the particular distribution of these two species in the benthic 
habitats. (Zaiko et al. in prep.) 
 
5.2 Physiological tolerance: Temora longicornis – Acartia longiremis (for details see 
Appendix II)  
 
In a series of laboratory experiments metabolic and reproductive responses of two 
populations of the calanoid copepod Temora longicornis from the Bornholm- and the 
Gotland Basin were determined. Ingestion, respiration, egestion, egg production and egg 
hatching success were compared at salinities ranging from 10 to 5. Both populations showed 
a decreasing ingestion and egg production with decreasing salinity, down to a critical salinity 
of 6 below which mortality increased to 100%. However, hatching success of eggs was high 
and respiration was generally constant at all salinities. Our results suggest that energy 
partitioning of T. longicornis is significantly affected by decreased salinity. 
 
In contrast to Temora longicornis, cultures of the calanoid copepod Acartia longiremis could 
not be established in the laboratory. The salinity tolerance was, therefore, investigated 
during a cruise to the Arkona and Bornholm Basin in September 2015 on R/V Dana. Feeding, 
fecundity and instantaneous survival to lowered salinity was compared in two populations 
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originating from a salinity of 16 and 7.8. Females of both populations displayed a broad 
salinity tolerance to lowered salinity. The lower lethal salinity, however, depend strongly on 
the population origin indicating local acclimation/adaption to salinity. Metabolic and 
reproductive rates were strongly related to salinity and decreased with lowered salinity. 
Similar to Temora longicornis, a salinity of 5 is critical to the population with regard to the 
species vital rates. Below it, decreased feeding rates were not sufficient anymore to sustain 
reproduction and high survival of the species. (Dutz et al.) 
 
5.3 Physiological tolerance to temperature and salinity change of a key copepod species in 
the Baltic Sea - Eurytemora affinis (for more details see Appendix III) 
 
Populations of the calanoid copepod Eurytemora affinis from locations across the Baltic Sea 
(Bothnian Bay, Pärnu Bay (part of Gulf of Riga), Askö) have been collected and exposed to 
different salinities and temperatures in common garden experiments to investigated their 
fitness response. Lowering the salinity (from 6 to 2 PSU) increased mortality, delayed 
development time and reduced egg hatching success in several populations. The combined 
effect of increased temperature and low salinity even further increased mortality. Increased 
temperature is especially stressful in the most northern populations as they are at their 
outmost temperature range. This suggests that some copepod populations likely have low 
tolerance levels to future climate change. The project has been performed within a master 
and PhD thesis and is currently being prepared for publication (Winder et al.). 
 
5.4 Mnemiopsis leidyi - range expansion salinity and temperature limits  
 
Mnemiopsis leidyi was present in the Baltic Sea from 2006 to the winter of 2010/2011. 
However, thereafter reports are sporadic and indicate that it could not establish a 
permanent population in the low saline Baltic Sea region. On the other hand, areas with 
higher salinity and higher winter temperatures, like the Dutch Wadden Sea and German 
Bight, support year-round populations and animals have been present there since its first 
sightings. Significant temperature effect on the distribution throughout Europe - especially 
for the Baltic Sea could be shown (Jaspers et al. in preparation)  
 
Investigations regarding M. leidyi are also a component of Task 2.3 where results will be 
presented in more detail. 
 
5.5. Effects of natural environmental conditions and shipping on the distribution of the 
invasive round goby (for more details see Appendix IV and paper within) 
 
Introductions of non-indigenous species (NIS) are considered a major threat to aquatic 
ecosystems worldwide. While it is valuable to know the distributions and ranges of NIS, 
predictive spatial models along different environmental gradients are more useful for 
management of these species. In this study we modelled how external drivers and local 
environmental conditions contribute to the spatial distribution of an invasive species using 
the distribution of the round goby Neogobius melanostomus in the Baltic Sea as an example. 
Using the collected distribution data, an updated map on the species distribution and its 
invasion progress in the Baltic Sea was produced. The current range of the round goby 
observations is extensive, covering all major sub-basins of the Baltic Sea. The most recent 
observations appeared in the northern regions (Northern Baltic Proper, the Gulf of Bothnia 
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and the Gulf of Finland) and on the eastern and western coasts of southern Sweden. 
Modelling results show that the distribution of the round goby is primarily related to local 
abiotic hydrological conditions (wave exposure). Furthermore, the probability of round goby 
occurrence was very high in areas in close proximity to large cargo ports. This links patterns 
of the round goby distribution in the Baltic Sea to shipping traffic and suggests that human 
factors together with natural environmental conditions are responsible for the spread of NIS 
at a regional sea scale. 
 
5.6 Differences in the invasive round goby (Neogobius melanostomus) populations in the 
Baltic Sea 
 
In the past 25 years, the non-indigenous round goby has invaded almost all Baltic Sea sub-
basins. The species was first observed in Hel, Gulf of Gdansk in Poland in 1990. The most 
recent observations were made in the Åland islands and Bothnian Bay (2011). The round 
goby populations in different parts of the Baltic Sea are experiencing very different abiotic 
conditions and have very different invasion histories: some populations have existed 25 year 
whereas some only few years.  
In our study we sampled round goby populations in five distinct locations representing most 
of the species range in the Baltic Sea: Guldborgsund (Denmark), Hel (Poland), Palanga 
(Lithuania) Muuga Bay (Estonia) and Mariehamn (Åland Islands). The populations were 
sampled using the same combination of fishing equipment in all sites. Samples of the 
populations differed significantly from each other: CPUE (catch/day) varied from 24.5 fish (in 
Hel) to 123 fish (in Guldborgsund). Some of the variation may be due to abiotic variation 
such as in weather conditions (especially wind) but some is definitely due to variation in 
population sizes. Condition of the fish (Fulton’s K) varied among the populations. The fish in 
Hel had the highest condition factor, Fulton’s K values (average in fall 2014 1.70 and in early 
summer 2015 1.67). The fish in Palanga and Mariehamn were in the poorest condition 
(average in fall 2014 1.43 and in early summer 2015 1.37 in Palanga and fall 2014 1.32 and in 
early summer 2015 1.45 in Mariehamn). 
Moreover, in 2015 a subset of 25 round gobies at each location (except from Poland) were 
inspected for presence of parasites and their conditions were measured using the 
hepatosomatic index. Out of a total of 100 fish that were examined 32 were females and 68 
males (table 2). Both sexes were smallest in Guldborgsund (TL 64-133 mm) whereas males 
were largest in Mariehamn (TL 93-205 mm) and females in Palanga (TL 77-198mm). 
Mariehamn sample was biased towards males and no females were included in the random 
subsample. Overall the infection rate was higher in females than males (pairwise t-test, 
p<0.05). In Muuga 73 % of all females were infected and the total infection prevalence was 
60 % in both Muuga and Mariehamn. These sites had the highest frequency of infection 
compared with 56 % in GBS and 28 % in Palanga. Conversely, the round goby males in 
Mariehamn were on average larger (TL 152.5 ±23.5 mm), had a higher HSI and were visually 
in better condition (e.g., less skin damage) than round gobies sampled from other sites. In 
contrast, the GSI of males was lowest in Mariehamn and highest in Palanga and GBS, 
whereas the trend was opposite regarding the HSI, which was lowest at these two sites. Age 
analyses are still pending, but they should provide more insights to the differences in 
population characteristics among these populations (P7: Maiju Lehtiniemi and Riikka Puntila) 
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5.7 Salinity tolerance of round goby (for more details see Appendix V) 
 
Non-indigenous species (NIS) can have strong impacts on marine biodiversity and ecosystem 
structure and function, including their services. Once introduced into a new region, 
secondary dispersal of NIS depends on a suite of ecological factors such as presence of 
predators, competitors, and parasites, yet with the most fundamental constraints on the 
distribution arising from the organism’s physiological limitations in relation to the ambient 
environment. Predicting dispersal however remains a challenge.  It was possible to show that 
physiological traits, namely aerobic scope and osmoregulation, can be used to predict 
performance and dispersal potential of an aquatic invasive/non indigenous species in novel 
environments. It was shown that round goby Neogobius melanostomus, one of the most 
wide-ranging invasive fish species in Europe and North America, has the capacity to occupy 
full oceanic environments. Currently round goby thrives in brackish and freshwaters, while it 
hitherto has remained unclear if the species will endure high salinity waters. Our results 
demonstrate that key physiological traits provides a tool to predict dispersal and hence ‘area 
of impact’ at an earlier state. Early predictions are a great asset in relation to taking 
appropriate management actions. While eradication of round goby is unrealistic, population 
control that leads to minimizing the risk of further secondary dispersal is feasible (Behrens et 
al. submitted).  
 
5.8 Salinity and temperature effects on egg development in round goby & 
Hand line survey in the Western Baltic (for detail see Appendix VI) 
 
Round goby Negobius melanostomus was first found in Puck Bay, Poland at the beginning of 
the 1990s (Skora & Stolarski, 1993). Since these first findings round goby managed to be one 
of the most successful invasive species within the Baltic Sea. The current distribution 
includes coast segments of all Baltic Sea bordering countries. However, the physiological 
limits, especially in relation to reproduction are not well understood. As a first step to 
estimate the potential spreading of round goby in saltier waters of the Western Baltic and 
the Kattegat, experiments were performed to test egg development and hatching success in 
different combinations of salinity and temperature. The experiment showed that salinity has 
a strong effect on the hatching success. The hatching success decreases with increasing 
salinity. Hatching success is also influenced by temperature. The highest hatching rates were 
observed at 15 °C. Furthermore, the status of invasion by round goby along the German 
coastline of the Western Baltic was investigated by a hand line survey. This revealed that the 
current position of the invasion front is in the area of Kiel Bight (Niemax, Temming et al.). 
 
5.9 Temperature and size-dependent functional response of sprat, Sprattus sprattus L 
(for more details see Appendix VIIa) 
 
Laboratory experiments were conducted to study the effects of temperature and body size 
on functional response of sprat using Artemia salina nauplii as prey to determine the 
maximum feeding rates. Functional response curves help to understand and quantify the 
impact of sprat on zooplankton communities in the Baltic Sea and serve as a basis for the 
estimation on food densities required for optimal growth of early juveniles. The present 
results indicate a strong influence of temperature on feeding success with lower numbers of 
sprat feeding at low temperatures. Feeding rates increased with both, temperature and fish 
body size. The relation between snatching rate and prey concentration, temperature and 
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body weight has been summarized in a mathematical model. Smaller fish had higher Q10 
values than larger conspecifics, suggesting that larger fish reach maximum feeding rates at 
even lower temperatures. This may be reflected in the utilization of habitats with small 
juveniles living near the coasts in summer with high temperatures compared to larger ones, 
which exhibit lower temperatures in the deeper regions (Kulke, Temming et al.) 
 
5.10 Another critical period: the importance of timing of the early juvenile stage for the 
potential growth performance in Baltic sprat (for more details see Appendix VIIb)  
 
Most recruitment determining mechanisms in marine fish species act in the earliest life-
stages, when mortality is highest. In Baltic sprat, a clupeid schooling fish with an extended 
spawning season, extensive research effort was invested to uncover processes in the larval 
stage that regulate year-class strength. However, the large amount of recruitment variability 
is still unexplained. Previous studies showed that the amount of larvae is unrelated to the 
number of YoY-recruits, highlighting the importance of the post-larval life-stage as a critical 
period modulating year-class-strength. In order to detect recruitment regulating 
mechanisms in the post-larval life-stages of Baltic sprat we performed a simulation study on 
growth and food demand of YoY-sprat wrapping up a comprehensive database on otolith-
derived growth rates and experimental investigations on feeding habits. We assumed a 
spawning time from February to August and modeled growth of various seasonal cohorts in 
relation to temperature. In a first simulation approach, we converted the daily length 
increases into the equivalent required amount of energy, applying a bio-energetic budget 
approach. We found that seasonal cohorts originating from the first half of the spawning 
season have a high total energy demand in the juvenile stage in contrast to later spawned 
cohorts despite a similar growth performance of early and late born sprat. Later spawned 
cohorts experience comparatively lower temperatures as early juveniles which reduces their 
metabolic costs in an already food demanding life stage. In a second simulation approach, 
we calculated maintenance concentrations for seasonal cohorts applying a length and 
temperature dependent relationship between prey concentrations and snatching rates. We 
found that cohorts from the first half of the spawning season, which have the potential to 
grow fast, soon rely on high maintenance rations to fulfill the metabolic demands of a large 
body size. In contrast, later cohorts with a similar growth potential reach large body sizes 
accompanied by high maintenance rations later in the season. Thus, the risk of starvation 
and depletion of energy reserves before the onset of winter is higher for earlier than for 
later born cohorts. A high cumulative energy demand and the disadvantage of being too 
large too early in the season, have the potential to decrease survival rates of early born 
cohorts and thus underline the importance of the right timing of the post-larval, early 
juvenile stage. Our results are supported by previous studies showing that successful YoY-
recruits of Baltic sprat stem from the second half of the spawning season only. 
 
5.11 Fish egg - buoyancy– experimental and field approach (for more details see Appendix 
VIII) 
 
Data from the 6-year time series (data analysis from up to four different stations) confirm a 
positive relation between egg size and egg buoyancy for sprat during April spawning 
seasons. Large eggs float higher in the water column compared to small eggs. The inter-
annual variation in the specific density layer was lowest for the largest diameter sprat eggs, 
thus reflecting rather stable density conditions. Egg density increased in 2014 and 2015 
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compared to previous years, although with large variation in 2014. In 2015, the highest 
significant mean value in the egg-density time series for sprat could be measured. The years 
2012 and 2013 were characterized by low April temperature in general, 2014 and 2015 by 
significantly higher temperatures. The oxygen conditions also changed during years on the 
analyzed density layers – however, if considering the threshold level of 2mg/l oxygen 
(Nissling et al., 2003), all egg diameter classes in all years and stations experienced values 
above that condition.  
 
The general characteristics of the pelagic flounder eggs in relation to environmental and 
depth related variables) showed statistical differences between the Bornholm Basin and the 
Gdansk/Gotland areas. Accordingly, the cumulative survival probabilities of egg batches 
might have changed in those areas. The results showed greatly enhanced survival 
probabilities in Bornholm basin 2015 as egg survival increased from 47% in 2014 to 100% the 
following year. In Gdansk Deep the situation was similar, and survival probability increased 
from 13% to 100%. In Gotland Basin no difference in survival probability was identified, 
although the dominant cause of mortality shifted from sedimentation, i.e. due to low salinity 
conditions in 2014, to oxygen deficiency in 2015. 
Hinrichsen et al. 2016 (paper in Appendix VIII) used field-derived cod egg diameter data in 
combination with buoyancy data to link these with stock characteristics to improve the 
current estimation method of a spawning stock biomass. The newly established relationship 
between egg diameter and buoyancy (floating depth) allowed quantifying the number of 
effective spawners able to successfully reproduce under certain hydrographic conditions. 
This study used eastern Baltic cod (Gadus morhua) eggs sampled during 8 years in the 
central Bornholm Basin. For the time period 1993-2010, the results revealed large variations 
in the horizontal extent of spawning habitat (1000-20000 km²) and oxygen-dependent egg-
survival (10-80%). 
 
5.12 Cod larvae – populations across geographical scales – experiments (for more details 
see Appendix IX) 
 
Through the increased usage of fossil fuels and changed land use, the concentration of 
atmospheric carbon dioxide has been steadily rising since the onset of the industrial 
revolution. A portion of this CO2 is dissolving into the oceans causing a decrease in pH, e.g. 
acidifying a habitat that covers 2/3 of this planet. This process has been coined “the other 
CO2 problem” or ocean acidification. Three experiments were performed, one at the Sven 
Lovén Centre in Kristineberg, Sweden in 2013 and two at the Centre for Marine Aquaculture, 
Tromsø, Norway in 2014 and 2015. In collaboration with researchers from the Heinrich 
Heine University, Düsseldorf, Germany and NOFIMA AS, Tromsö/Norway the effect of an 
increase in pCO2 concentrations, representing a climate change stressor, on cod (adults, eggs 
and larvae) was studied. At the first location, the larvae were fed natural plankton from the 
adjacent fjord, while in Tromsø in 2014 two variants of aquaculture feeding protocols were 
applied. In 2015 adult cod where kept under control (400 ppm CO2) and treatment (1000 
ppm CO2) for 20 weeks prior to spawning to investigate potential effects of parental 
acclimatization, e.g. transgenerational effects. 
 
The experimentally estimated daily mortality rates were consistent among all stocks and 
feeding conditions, the end-of-century CO2 treatment resulted in an approximately doubling 
of mortality. Our findings additionally suggest that even at ad libitum feeding, e.g. a richer 
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energy budget that would allow for more efficient acid-base regulation, cod larvae cannot 
mediate the adverse effects of ocean acidification. This strengthens the hypothesis that 
larvae will be negatively affected by ocean acidification independent from food availability in 
a patchy or match-mismatch environment. However, this apparently does not hold true for 
growth patterns. At high fed availability, larvae in ambient and end-of-century treatment 
show no apparent differences in standard length and dry weight by the end of the 
experiment (36 dph). The experiments performed clearly show that larvae of Western Baltic 
and coastal Barents Sea cod in 2014 are impacted by near future levels of ocean 
acidification. While some results are easy and directly to interpret, namely the massively 
increased daily mortalities, other variables such as the growth patterns need to be analyzed 
in more detail to understand the underlying physiological and genomic mechanisms as well 
as their implications, may they be ecological or socio-economic.  
 

6. Progress and next steps 
 
Studies and work-tasks were performed according to the workplan and original objectives 
were obtained. A wealth of new information now available and is presented in detail in the 
appendices. In the next steps this knowledge gain will be used for management, modeling 
and links to WP(2), 3, 4 and 5. There it can be further analysed and exploited. All future 
outcomes of Task 1.2 will be included in upcoming annual reports 
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APPENDIX I 

 

Community level responses and invasive zooplankton species performance along 

gradients  

Evelina Griniene, Aurelija Samuiloviene, Anastasija Zaiko 

Klaipeda University, Marine Research and Technology Centre (KU-CORPI, P8) 

 

There were two field studies conducted, addressing the task’s objective. 

 

1. A study on contribution of NIS species to zooplankton communities at 3 coastal habitats was 

performed employing high-throughput sequencing (HTS) metabarcoding approach and 

comparing those data to the conventional surveillance results. A paper ”Metabarcoding 

approach for nonindigenous species surveillance in marine coastal waters” is accepted for 

publication in Marine Pollution Bulletin (Zaiko et al., 2015) and attached as part of this appendix. 

 

2. Another study involved two surveys along a salinity gradient from Nemunas river mouth, the 

Curonian lagoon to the western edge of the Lithuanian EEZ. Micro- and mesozooplankton 

samples were collected within vertically stratified water columns above and below halocline. The 

results of the study were presented at the Baltic Sea Science Congress and ICES Annual 

Science Conference, in 2015. Data analysis is finalized and the corresponding paper is in 

preparation. Preliminary title of the manuscript is "Abundance and composition of zooplankton 

communities in the river-lagoon-Baltic Sea continuum” (Griniene et al., in prep). 

 

Methods and results 

 

1. Along with the routine zooplankton monitoring (LNM), six samples for HTS metabarcoding 

were collected at 3 locations within the Lithuanian coastal zone, influenced by the Curonian 

Lagoon plume: Klaipeda Strait area (KS), out of the strait from the sea side (SG) and at the 

northern edge of the plume area (PA). Sampling effort and environmental conditions at the 

locations are summarized in Table 1. 

 

The conventional (morphotaxonomic) analysis of the monitoring samples was conducted 

following the HELCOM guidelines (HELCOM 2005). For HTS metabarcoding, the modified 

universal COI primers (Geller et al. 2013) were used for PCR amplification of a fragment of 

approx. 658 base pairs (bp) within the mitochondrial gene coding for the cytochrome oxidase 

subunit I (COI). PCR reactions were undertaken by Macrogen based on the original protocol 

described by Geller et al. (2013). They were sequenced using a Genome Sequencer FLX 

(Roche) by Macrogen (Korea). Raw data were then processed using MOTHUR v.1.34.4 

software (Schloss et al. 2009), and taxonomy was assigned using BOLD Systems reference 

sequence database 
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Table 1. Sampling effort as number of samples analyzed by each method; environmental 

conditions over the observation period; number of species/taxa detected (proportion of NIS in 

parentheses), in three sampling sites. 

 
 

2. Ciliates and zooplankton samples were collected during two cruises in April and July 2014. 

The stations were chosen to form the gradient along Nemunas river-Curonian lagoon-Baltic Sea 

(Fig. 1). Zooplankton samples were taken and analyzed according HELCOM (2005) 

recommendations. Ciliate counts were performed in Lugol fixed samples by Utermöhl’s (1958) 

method.  
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Figure 1: Locations of the sampling stations along the river-lagoon-Baltic Sea continuum 

(Griniene et al., in prep). 

 

Results 

 

1. HTS results were compared to those from routine monitoring survey and morphological 

analyses. Comparison of the zooplankton surveillance results obtained by two approaches 

indicated some discrepancies in retrieved species data, although the taxonomical composition 

was rather consistent at higher levels (Fig. 2). All the genera and species identified in our survey 

had been reported also from other studies in the area.  

Noticeably, among the species identified exclusively by metabarcoding, five were the benthic 

organisms with planktonic larval stage (Dreissena polymorpha, Hydrobia ulvae, Marenzelleria 

neglecta, M. viridis and Mytilus sp.). Usually, larvae of benthos are not identified in monitoring 

samples due to their cryptic morphology and lack of specific taxonomical expertise. This implies 

potential biosecurity risks, since many invasive sessile organisms have dispersive planktonic 

stage (like three of the aforementioned species – D. polymorpha, M. neglecta and M. viridis), 

and might be overlooked in morphologically analyzed monitoring samples. 
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Four of five non-indigenous species found in the samples were identified exclusively by 

metabarcoding. All of them are considered as invasive in the Baltic Sea with reported impacts on 

ecosystem and biodiversity. The proportion of identified NIS was significantly higher in 

metabarcoding results. Most of them were detected in the transitional zone between the 

Curonian Lagoon and the Baltic Sea, characterized by the most variable salinities. 

In all three sampling locations there were sequences attributed with high confidence to the 

invasive polychaete M. viridis. Based on the results of the earlier molecular identification and 

areal distribution assessment of three sibling Marenzelleria species within the Baltic Sea, only M. 

neglecta was unambiguously reported from the eastern and south-eastern regions (where 

Lithuanian cost belongs to).  

 

2. From the comprehensive zooplankton survey along the salinity gradient, three groups of 

samples: Nemunas River avandelta, Curonian Lagoon and Baltic Sea were distinguished by 

ordination (MDS) on the basis of similarity of zooplankton and ciliate community structure (Fig. 

3). 

Zooplankton biomass increased from Nemunas River avandelta towards the Baltic Sea. 

Community shift from cladocerans in the Curonian Lagoon to rotifers in the Baltic Sea was 

observed. Ciliate biomass was 1-3 order of magnitude higher compare to zooplankton biomass 

and tended to decrease from Nemunas river avandelta stations towards the Baltic Sea, but this 

pattern was less pronounced compare to zooplankton biomass. The most significant factors 

determining shifts in zooplankton community structure are salinity and chlorophyl-a 

concentration. Zooplankton community was homogeneous in the sea, without notable effects of 

plume zone.  

Conclusions and future perspectives 

1. Our findings contributed to the update of the current distributional maps of the species as well 

as national inventories of the non-indigenous organisms. Further groundtruthing studies are 

anticipated to verify the particular distribution of these two species in the benthic habitats. 

As a complementary monitoring measure, HTS is advantageous for determining the identities of 

marine NIS, uncovering new or earlier overlooked invasions, monitoring invasion dynamics, 

assessing and predicting the secondary spread and thus NIS effect on recipient communities. 

HTS data obtained from the non-targeted metabarcoding survey can provide information on the 

number of NIS in a given area and their temporal and spatial occurrence necessary for the 

environmental status assessment within the MSFD. 

2. This was the first comprehensive micro- and mesozooplankton survey conducted in the 

Lithuanian water along the entire salinity gradient. The information gained from this study will 

help to get better insight into functioning of the pelagic system and relevant responses in the 

higher trophic levels. By providing the data on the zooplankton distribution within the Lithuanian 

coastal zone, we have contributed to the study on spatial and temporal zooplankton variability 

led by EMI team. A publication I was submitted to the Journal of Plankton Research (Klais et al., 

2016). 
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Figure 2: MDS plots showing similarities in the composition of taxa (A- at a species (lowest 

assigned taxonomy) level, B- at a family level) identified by two approaches at three sampling 

locations. Black dots correspond to HTS samples, open triangles – LNM samples, labels indicate 

sampling site and month (Zaiko et al., 2015). 

 



24 
 

 

Figure 3: MDS plot based on zooplankton and ciliates biomass data. 
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a b s t r a c t

Transfer of organisms with ships’ ballast water is recognized as a major pathway of non-indigenous spe-
cies introduction and addressed in a few recent legislative initiatives. Among other they imply scientific
and technical research and monitoring to be conducted in a efficient and reliable way. The recent devel-
opment of DNA barcoding and metabarcoding technologies opens new opportunities for biodiversity and
biosecurity surveillance. In the current study, the performance of metabarcoding approach was assessed
in comparison to the conventional (visual) observations, during the en route experimental ballast water
survey. Opportunities and limitations of the molecular method were identified from taxonomical data-
sets rendered by two molecular markers of different degree of universality – the universal cytochrome
oxydase sub-unit I gene and a fragment of RuBisCO gene. The cost-efficacy and possible improvements
of these methods are discussed for the further successful development and implementation of the
approach in ballast water control and NIS surveillance.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Non-Indigenous Species (NIS) are recognized as one of the
greatest threats to biodiversity worldwide (IUCN, 2000). These
are non-native species introduced from outside of their natural,
past or present distributional range, deliberately or unintentionally
by humans or other agents (Martin and Hines, 2008). Part of them
may spread in the recipient region and become invasive, acting as
biological pollutants with adverse effects on biological diversity,
ecosystem functioning and socio-economic values (Elliott, 2003;
Olenin et al., 2007). Records of new observations and established
NIS have been increasing steadily in different marine ecosystems
during the two last centuries and are still rising. In European mar-
ine ecosystems, on average two new NIS records occurred annually
during the past decade (Olenin et al., 2014). Taking into account
that global shipping activities have increased dramatically over

the last decades, with >20% annual growth rate (Endersen et al.,
2008), shipping is believed to be one of the most important path-
ways for species introductions (i.e., transport of organisms in bal-
last waters and/or in sediments of ballast tanks and biofouling)
(Wonham et al., 2001; Leppakoski et al., 2002; Hewitt et al.,
2009). It has been estimated that the major cargo vessels annually
transport nearly 10 billion tons of ballast water (Gollasch et al.,
2002), with thousands of stowaway organisms being transported
every day (Carlton and Geller, 1993; Gollasch et al., 2000b). This
results in worldwide NIS exchange and growing risks of marine
biological pollution (Elliott, 2003).

The significance of NIS transfer is presently acknowledged by
international organizations and is addressed in a number of recent
legislative initiatives (e.g. EU Strategy on Invasive Alien Species,
Marine Strategy Framework Directive). In particular, the impor-
tance of ballast water as a vector of species translocation is recog-
nized through the Ballast Water Management (BWM) Convention,
adopted in 2004 by the International Maritime Organization (IMO).
The BWM Convention is aimed to prevent, minimize and ulti-
mately eliminate the transfer of organisms via shipping, through
the control and management of ships’ ballast water and sediments
(IMO, 2004). IMO has formulated a number of special regulations
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in order to reduce the risk of organism transport. It also implies sci-
entific and technical research and monitoring to be conducted by
Parties of the BWM Convention. This includes observation, mea-
surement, sampling, evaluation and analysis of the effectiveness
of any management measure applied as well as analysis of any
adverse impacts caused by such organisms and pathogens that
have been transferred through ships’ ballast water. On the other
hand, the robust detection of NIS is crucial for implementing
timely and cost-effective management measures including pre-
border or early incursion control (Simberloff, 2001; Darling and
Blum, 2007; Darling and Mahon, 2011). Therefore there is a
demand for rapid, standardized, reliable and cost-effective diag-
nostic tools that are able to identify and quantify the full range
of NIS assemblages (King and Tamburri, 2010; Olenin et al.,
2011). It is expected that this demand will increase tremendously
in the nearest future after updated marine monitoring programs
are launched and BWM Convention enters into force.

The accuracy and resolution of NIS data needed for different
policy measures varies. For instance, Regulation D-2 Ballast Water
Performance Standard limits the acceptable concentration of all
organisms in the discharge of ballast water, disregarding the spe-
cies composition. Therefore, the species identification is not
required for compliance control tests (IMO, 2004). Uneven distri-
bution and damage of organisms during the sampling procedure
may however bias the test results. Particularly challenging is
BWM Convention compliance verification for organisms of mini-
mum dimension P50 lm, since less than 10 viable organisms of
that size per cubic meter are acceptable by BWM Convention
(Gollasch, 2006; Gollasch et al., 2007). Therefore, intensive and
extensive sampling is needed to ensure that violations of BWM
Convention for discharges are detected by direct ballast water
measurements (King and Tamburri, 2010). Application of alterna-
tive techniques such as remote sensors, flow cytometry and molec-
ular methods are being increasingly discussed and addressed in
experimental ballast water surveys (Gollasch et al., 2007; Harvey
et al., 2009; Briski et al., 2012; Ojaveer et al., 2014).

On the other hand, simple counts of observed organisms do not
provide any additional information on biosecurity risks and are of
minor scientific value for bioinvasion researchers. More detailed
information (including taxonomic structure) is highly recom-
mended for development of pressure indicators (e.g. rate of anthro-
pogenic transport of NIS propagules), environmental status
assessment, port baseline surveys, and species-specific risk assess-
ments (Gollasch et al., 2007; Olenin et al., 2010, 2011; Ojaveer
et al., 2014). This requires specific taxonomic expertise which is
costly and extremely laborious, both in terms of representative
sample collection and identification of dispersive life forms of
NIS – eggs or larvae (Darling and Blum, 2007; King and
Tamburri, 2010). It is believed that the application of rapidly devel-
oping molecular methods can substantially improve species identi-
fication capacities and aid NIS surveillance in the nearest future
(Mountfort et al., 2012; Kelly et al., 2014; Wood et al., 2014).

Among molecular techniques, traditional DNA-based taxon
identification approaches (e.g., PCR-based fingerprinting, quantita-
tive PCR, Sanger DNA sequencing) can be efficient for detecting and
identifying targeted NIS (Bott et al., 2010; Darling and Mahon,
2011; Mountfort et al., 2012; Collins et al., 2013). However, these
methods are often limited to a single species detection, and there-
fore not effective enough for biodiversity assessment. The recent
development of the high-throughput DNA sequencing technology,
also called Next Generation Sequencing (NGS), opened new oppor-
tunities for life sciences in general (Ansorge, 2009) and demon-
strated a great potential in marine biological and environmental
studies in particular (Chariton et al., 2010). The major advance
offered by this approach is the ability to operatively produce large
numbers of comparatively low-cost sequences. This opens many

different application opportunities, including metabarcoding stud-
ies: species detection and identification from bulk samples, using
species-specific gene markers – the DNA barcodes (Hajibabaei
et al., 2011; Andersen et al., 2012). DNA barcoding and NGS have
already been recommended as a prospective tool for identifying
NIS from environmental samples (Mountfort et al., 2012; Kelly
et al., 2014; Ojaveer et al., 2014; Wood et al., 2014).

Here we address the applicability of metabarcoding methodol-
ogy for the biosecurity surveillance, and particularly detection of
organisms in ships’ ballast waters. For this purpose the perfor-
mance of metabarcoding approach was assessed in comparison
to the conventional (visual) methodology, during the en route bal-
last waters survey onboard R/V ‘‘Polarstern’’. Opportunities and
limitations of the molecular approach were identified from taxo-
nomical datasets rendered by two molecular markers of different
degree of universality – the universal cytochrome oxydase sub-
unit I gene (COI) (Hebert et al., 2003) and a fragment of RuBisCO
(RBC) gene, designed for diatom identification (Stoof-
Leichsenring et al., 2012). The cost-efficacy and possible improve-
ments are discussed for the further successful development and
implementation of the approach in ballast water control and NIS
surveillance.

2. Methods

The study was conducted during the ANT XXIX-1 EUROPA
cruise onboard R/V ‘‘Polarstern’’, hosted by the Alfred Wegener
Institute for Polar and Marine Research (Germany). The vessel left
Bremerhaven port on October 28 2012, called at Las Palmas, Gran
Canaria, on November 4 and left the next day, crossed the equator
on November 14 and ended the cruise on November 27 in Cape
Town, South Africa (Fig. 1). For the purpose of the ballast water
experimental study, the aft ballast tank (70 m3) was filled with
the North Sea water on October 28, out of Bremerhaven port. At
the time of the ballast water upload, water temperature and salin-
ity were 13.1 �C and 34 ppt, correspondingly.

Twenty samples of the ballast water were collected daily via the
sounding pipe (20 mm diameter) starting from the 2nd day of the
cruise, October 29 till November 17 (Fig. 1). Ballast water was
extracted from approximately 1.5 m depth, through the build-in
ballast pump (operational pressure up to 6 bar, loading capacity
ca. 20 L/min), taking care to thoroughly flush the pipes before sam-
pling. For each sample, 100 L of ballast water (measured with clean
10 L buckets) were concentrated by filtering through a plankton
net (30 cm diameter, 55 lm mesh size) and instantly analyzed
using a stereo microscope (60� magnification). The observed
organisms were counted and identified to lowest possible taxo-
nomic level. Only undamaged individuals without decay signatures
were assessed, assuming them being viable or recently alive. Addi-
tional samples on days 2, 11 and 21 of the cruise were collected
and vacuum-filtered through sterile 0.12 lm Nuclepore™ mem-
brane, which was thereafter preserved with 96% ethanol and
stored at 4 �C until the further land-based metabarcoding analysis
of the settled material.

Simultaneously with the sample collection, environmental con-
ditions in the ballast water were recorded, measuring salinity, tem-
perature, pH, dissolved oxygen concentration with Ysi Professional
Plus Multimeter. The sea surface temperatures were recorded
automatically by the build-in onboard sensors.

2.1. Genetic and bioinformatics analyses

The precipitates from membrane filters were collected with
sterile blades, then DNA was extracted from the filters using QIA-
amp DNA Mini Kit (Qiagen) and following the manufacturer
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extraction protocol. COI was amplified using the universal primers
miniCOI (Meusnier et al., 2008) for PCR amplification. The frag-
ment RBC gene was PCR amplified using a pair of primers designed
for diatom identification (Stoof-Leichsenring et al., 2012). The com-
parison between the NGS results obtained from the two markers
served to further explore the biases in ballast water biodiversity
assessment due to primer specificity.

High-throughput sequencing was performed using the next
generation sequencing platform Ion Personal Genome Machine
System (PGM. Lifetechnologies) at Sequencing unit of the Oviedo
University. For multiplexing purposes, the PCR products were
labeled separately for each sample using short DNA sequences.
Libraries were constructed using the Ion Plus Fragment Library
Kit (Lifetechnologies) and templates were obtained using the Ion
PGM™ Template OT2 200 Kit (Lifetechnologies). The templates
were loaded in a 314 chip and sequenced using the Ion PGM
Sequencing 200 Kit v2 (Lifetechnologies).

The yielded sequences where filtered by length (between 130
and 200 bp for COI and 80–130 for RBC gene) and quality (+20)
and taxonomic classification (best hit, max e value = 0.001, min
percent identity = 90.0) was assigned BLAST-aligning sequences
against NCBI database using QIIME platform (Caporaso et al., 2010).

After initial inspection, the sequences of the organisms unlikely
to be present alive in ballast water (e.g. vertebrates and non-
aquatic species) were eliminated from the dataset. Most probably,
sequences of those organisms were derived from body remains
such as scales or feathers that can occur in marine water uploaded
in the tank, but they will have no biological significance as NIS.

2.2. Statistical analysis

For quantification summary and statistical analyses of biodiver-
sity the species data were pooled to superior taxonomic ranks
(Class or higher), as in Smith et al. (1999), for a conservative

Fig. 1. ANT XXIX-1 EUROPA cruise route with indicated days and locations of ballast water sampling.
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estimate of biodiversity in the ballast water assemblages. This way,
possible uncertainties in the visual taxonomic assessment (due to
for example the ambiguous phenotypes in species with phenotypic
plasticity and uncertain identification of some larvae and
algae propagules) were minimized. The composition of species
(presence–absence data) identified from visual analysis was com-
pared between sampling days using nonmetric multidimensional
scaling (NMDS) based on Jaccard similarity matrix. NMDS cannot
process identical samples, so a dummy variable (value 1) was
added to all samples when constructing the similarity matrix.
NMDS was undertaken with 100 random restarts and visualized
in two-dimensional plot. Linear regression was applied to ascertain
the trends in densities of metazoans, protozoans and algae visually
identified from ballast water samples.

To verify the differences in taxonomic diversity reported from
visually analyzed samples and metabarcoding results (with COI
and RBC barcodes), the canonical discriminant analysis of principal
coordinates (CAP) was applied, followed by a permutation test
and two-dimensional visualization. The Gower’s distance measure
was used for dissimilarity matrix construction, based on densities
(number of observed individuals and number of yielded sequences
for visual and metabarcoding data correspondingly) and standard-
ized by total number per sample. The Gower’s distance is
considered robust enough for standardized data analysis, flexible
and non-sensitive to missing observations and double zeros
(Quinn and Keough, 2002; Anderson and Willis, 2003). Samples
from days 16 to 19 with no visually detected specimens were
excluded from the analysis.

The analyses were implemented in PRIMER 6 software package
(PRIMER-E, Ltd., UK) and the R v3 statistical computing environ-
ment (R-project, 2014).

3. Results

3.1. Environmental conditions within the ballast tank

The temperature within the ballast tank showed a steady
increase over the first 14 days of observation, in consistence with
the overboard temperature and reached the maximum of 29.9 �C
on day 15. During the following six days the temperature dropped
gradually by 6 �C, exceeding the sea surface temperature by 2 �C on
average (Fig. 2). Dissolved oxygen concentration decreased from
the normoxic conditions (7.3 mg/L; 91.5% saturation) at the begin-
ning of the voyage, to anoxia (0.3 mg/L; 5% saturation) on the 20th
day of observations. The pH values also demonstrated a gradual
decrease in the range from 7.9 to 7.1.

3.2. Visual analysis

From the visually analyzed samples 14 taxa were identified dur-
ing the observation period (Table 1). The noticeable change in com-
munity composition was reported starting from the second week
of the observations (Fig. 3).

In the beginning, samples were dominated by numerous micro-
algae (diatoms and dinoflagellates), with a significant negative
trend (R2 = 42%, p = 0.002) – more than tenfold decrease in a week
and further drop down to zero values after few more days (Fig. 4).
The last record of algae (dinoflagellate) cells was reported on the
13th day of the cruise (9 November).

The metazoan taxa have also demonstrated significant negative
trend (R2 = 26%, p = 0.02) over the observation period, yet individ-
ual organisms (arrow worms) were reported from the samples on
day 20. It is worth noting however that increasing number of dam-
aged, partly decayed individuals was registered starting from the
second week of observations (day 8 and thereafter).

Single protozoan specimens were steadily reported from the
samples with no apparent trend in densities (R2 = 14%, p = 0.09),
except for an abrupt outbreak on the last sampling day when
122 actively moving protozoans with cilia-like protrusions were
observed in the sample.

3.3. NGS results

PCR amplifications of both COI and RuBisCO (RBC) genes
resulted in amplicons (145 and 97 nucleotide long correspond-
ingly) from day 2 (COI1, RBC1), day 11 (COI2, RBC2) and day 21
(COI3, RBC3) samples. The raw high-throughput sequencing of
the amplicons produced 159,039 (COI) and 137,518 (RBC) reads.
The stringent quality check and filtering parameters resulted in
the removal of 28.7% (COI) and 32.3% (RBC) sequences. The number
of high-quality sequences used for the further downstream analy-
sis was 113,267 and 93,060 for COI and RBC samples correspond-
ingly. The bioinformatics analysis resulted in the clustering of
sequences into 29 and 136 OTUs, for COI and RBC respectively,
yielding positive assignment hits against NCBI database with
>90% sequence similarity and identified at genus level for conser-
vative approach (Suppl. 1 and 2, summarized in Table 1).

Absolute majority of assigned sequences (96%) from COI1 sam-
ple matched with metazoan species, while most (55%) of COI3
sample sequences were assigned to oomycetes (fungus-like
eukaryotic microorganisms), followed by unidentified marine
invertebrates (22%) and protozoans (10%). The RBC samples were
highly dominated (nearly 90%) by diatom sequences as expected
from primers’ specificity, followed by yellow–green algae.

Generally, there was apparent decrease in a number of yielded
sequences from day 21 sample for both applied markers (compar-
ing to the day 2 sample). However, when partitioned by large tax-
onomic groups based on COI results, a remarkable drop in number
of sequences was apparent for algae (�60%) and metazoans
(�77%), while protozoans demonstrated more than tenfold
increase (Fig. 4). The oomycetes (not detected by visual analysis)
have also noticeably increased in number of yielded sequences
by the end of observation period.

At a lower taxonomic level, there were a few taxa that have
demonstrated increase in sequence number by more than 100%

Fig. 2. Registered environmental conditions in the ballast tank: water temperature
(black dots – ballast water, grey dots – sea surface), dissolved oxygen concentration
and pH.
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over the observation period (Suppl. 1 and 2). The bigger increases
of DNA sequences detected with COI primers were those assigned
to the water mold Achlya, Arcellinidae protozoan Hyalosphenia and
the rotifer Brachionus (Suppl. 1). The copepod Cyclopodia, red algae,
protozoans, gastropods and most of the oomycetes have
demonstrated somewhat increase in later samples. On the other
hand, the algae diversity derived by NGS with RBC primers
(Suppl. 2) was more consistent among samples. Several diatom
genera (namely, Eunotogramma, Minidiscus, Skeletonema and
Thalassiosira) did show higher than ten-fold increase in the number
of sequences during the observation period. Red algae and yellow–
green Botrydiopsis have also demonstrated moderate increase by
day 21.

The diatoms detected with COI primers (Nitzchia spp.) were
reported from the RBC samples as well. However red algae

assignments showed discrepancy between two applied markers.
Two genera of Ceramiales (Polysiphonia and Dasya) and Plocamium
(Plocamiales) were obtained with COI, while RBC has resulted in
Ceramium (Ceramiales) and Delisea (Bonnemaisoniales).

The permutation test carried out by CAP produced a p-value of
0.001 (based on 999 permutations). It means that no randomly
permuted data set had more extreme assemblage than that of
the original data set. It is noticeable that visually analyzed
samples from days 2 to 11 with a major component of algae were
located on the positive-valued side of the Axis 1 (Fig. 5).
Expectedly, the RBC samples with applied diatom-specific bar-
code grouped on the positive-valued side as well. The taxonomic
diversity reported from the ballast water samples on 12th day of
the cruise onwards grouped on the negative-valued side of the
Axis 1, correlating with protozoan abundance and moderately – with

Table 1
Reported biodiversity from the ballast tank during the cruise (represented by the number of observed specimens and number of yielded sequences for the visual and
metabarcoding data correspondingly, counts per 100 L of ballast water). COI1, COI2, COI3 and RBC1, RBC2, RBC3 samples correspond to days 2, 11 and 21 samples. Unident. Invert:
Unidentified invertebrates. Summarized values for the highest taxonomic ranks are emphasized in bold.

Taxa Visual observations (days of voyage) Metabarcoding samples

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 COI1 COI2 COI3 RBC1 RBC2 RBC3

Algae (total) 457 309 107 82 17 37 15 10 5 6 0 2 0 0 0 0 0 0 0 0 113 15 45 325,013 26,476 33,209
Bacillariaphyceae 404 308 105 79 14 34 12 10 3 5 0 0 0 0 0 0 0 0 0 0 113 15 0 285,687 22,993 29,056
Dinophyceae 53 1 1 3 3 3 3 0 2 1 0 2 0 0 0 0 0 0 0 0 0 0 0 12,829 976 1044
Phaeophyta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2306 110 118
Rhodophyta 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 86 8 63
Xantophyta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24135 2389 2928

Metazoa (total) 17 4 2 4 5 7 6 1 2 1 2 5 0 9 0 0 0 0 5 0 12217 16068 2795 0 0 0
Annelida 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0
Chaetognatha 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 5 0 0 0 0 0 0 0
Copepoda 13 0 0 3 3 1 1 0 1 0 2 5 0 7 0 0 0 0 0 0 0 0 17 0 0 0
Cnidaria 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mollusca 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1154 179 0 0 0
Nematoda 1 2 2 0 2 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ostracoda 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Porifera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1871 2564 474 0 0 0
Rotifera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 412 0 0 0
Unident.invert. 2 1 0 1 0 3 1 0 1 0 0 0 0 1 0 0 0 0 0 0 10344 12344 1856 0 0 0

Protozoa 1 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 122 49 11 862 0 0 0

Oomycota 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 310 17 4611 0 0 0

Fig. 3. NMDS plot of the visually observed ballast water community, based on presence/absence of observed taxa (Jaccard index similarity matrix).
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metazoans and oomycetes. Yet, the COI samples were apparently
distinct from others, demonstrating the highest positive correla-
tion (ranging between 0.4 and 0.6) with the Axis 2 and
correlating mostly with metazoans and oomycetes.

4. Discussion

This study evidences again that despite rather harsh
environmental conditions (darkness, low oxygen, temperature

fluctuations) during the long cross-latitudinal voyage there is a
possibility for some eukaryote species to survive and even
flourish in ballast waters (Gollasch et al., 2000a,b; Olenin et al.,
2000; Duggan et al., 2005). Such organisms are likely to remain
viable upon discharge, thus posing a high risk of incursion to a
recipient ecosystem. The combination of metabarcoding and con-
ventional (visual) taxonomic analysis let us assess the dynamics
in ballast water plankton community and identify taxa that have
the highest potential of survival.

Fig. 4. Densities of algae, metazoan and protozoan organisms reported from the visual analysis of the ballast water samples (number of individuals counted from the 100 L
sample) and metabarcoding analysis with COI barcode gene applied (number of sequences yielded from NGS).

Fig. 5. The first two canonical axes of the CAP analysis, based on taxonomic diversity identified from the ballast water samples applying visual analysis, COI and RBC barcodes
(only major taxonomic groups are displayed for clear reading). The labels indicate the sampling day for visually analyzed samples (open circles) and sample code for RBC and
COI samples (black triangles and filled circles correspondingly).
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In general, the biodiversity revealed by both approaches at a
higher taxonomic level (Table 1) coincided with that reported from
other studies (Gollasch et al., 2000a,b, 2002; Olenin et al., 2000;
Duggan et al., 2005; Flagella et al., 2007; Briski et al., 2012). As
reported also by other researchers, a rapid decline in plankton
abundances was noticed during the first several days of the voyage,
with a more pronounced decrease for the phytoplankton taxa
(Gollasch et al., 2000a,b; Olenin et al., 2000). The metazoan organ-
isms have demonstrated higher persistence with evident drop at
the most adverse environmental conditions within the tank
(anoxic, high temperature) during the second week of the cruise
(Figs. 2–4). Protozoans however were able to withstand the harsh
ballast water environment and even increased in abundance by the
end of the observation period. Such apparent shift in the ballast
water community from algae-dominated to metazoan- and further
microplankton-dominated (Fig. 5) can be explained by phytoplank-
ton and zooplankton mortality increasing with time due to expo-
sure to stressful conditions, and proliferation of saprophagous
water molds and protists resistant to high temperatures, lack of
light and oxygen (Jobard et al., 2010). On the other hand, these
organisms were largely underestimated in previous ballast water
surveys (Gollasch et al., 2000b, 2002; Duggan et al., 2005;
Flagella et al., 2007) and in most NIS inventories in general
(Wyatt and Carlton, 2002). For instance, the absolute majority of
species currently reported as associated with vessel vectors in
the AquaNIS database are metazoans (Olenin et al., 2014). Small
multicellular and unicellular organisms (as well as dispersible liv-
ing stages of many taxa) are easy to overlook and confound in the
conventional taxonomic assessment (Foissner, 2006) or due to
unrepresentative sampling strategy (Gollasch et al., 2007). In this
case metabarcoding and NGS technologies are advantageous being
able to detect and identify species from a single cell present in the
sample (Jerde et al., 2011; Kelly et al., 2014).

At the lower taxonomic level, as resulted from the NGS data,
there were a few genera that have not been reported from the bal-
last water surveys previously (Suppl. 1 and 2). Some of those are
known to contain NIS or even invasive alien species. For instance,
the red algae Dasya baillouviana recorded in the Baltic Sea since
1960s (Maggs and Stegenga, 1999), several species of Polysiphonia
are recognized as NIS from North Atlantic, Mediterranean, Austra-
lia, New Zealand and Japan (Hurd et al., 2004; Minchin, 2007;
Geoffroy et al., 2012). However, the exact pathway or vector of
spread is still largely undetermined for those species (Thomsen
et al., 2007). The invasive oomycetes of Phytophthora genus are
known to be associated with plant twig blight disease in Europe
(Werres et al., 2001) and Sudden Oak Death disease in USA
(Rizzo et al., 2005). Although it is believed that Phytophthora spe-
cies are distributed predominantly via the terrestrial pathways
(wind, land-based transport, planting material from infected nurs-
eries), they are known to remain viable in water for years (Ko,
2003) thus potentially could be transported with ballast water
loaded from estuarine or coastal areas.

In the current study we did not assess specifically the viability
of the organisms observed, as it is required for BWM Convention
compliance control (e.g. Regulation D-2). In visual analysis we
assumed that entire, undamaged individuals are likely to be alive
at the sampling time or shortly before. However DNA molecules
can resist for some days inside dead cells and even naked until deg-
radation, as demonstrated in some previous studies of environ-
mental DNA (e.g. Dejean et al., 2011). Therefore finding evidence
of DNA from a species in environmental samples does not mean
that it belong to a living organism. This, and inability of providing
the measure of minimum dimension of observed organisms are
probably the main weaknesses of metabarcoding application for
the BWM Convention compliance control. However, DNA can be
a signal of living organisms when its density increases with time.

This could be the case of Achlya, Brachionus and Hyalosphenia in
the present study (Suppl. 1). On the other hand, an increase of
these taxa would be not surprising, since Achlya belongs to hardy
water molds (Willoughby, 1965), Brachionus adults have been pre-
viously found surviving the long voyages within the ballast water
(Gollasch et al., 2002; Duggan et al., 2005) and Hyalosphenia, a
widespread and rather resistant representative of testate amoebas
(Heger et al., 2013), known to be transported in ballast water as far
as to the Great Lakes (e.g. Nicholls and MacIsaac, 2004). Among
other organisms that have not decreased (or even slightly
increased) in density (Suppl. 1 and 2) as evidenced by both by
COI and RBC markers, the red algae (e.g. Polysiphonia) have free-
living life-history phases (Kaczmarska and Dowe, 1997) and can
tolerate high temperatures, low salinities and lack of light for
extended periods (Fralick and Mathieson, 1975); diatoms are capa-
ble of survival in darkness 12 days and more (laboratory experi-
ment at 18 �C temperature, Jochem, 1999), maintaining cell
abundance up to 90 days (laboratory experiment, at 15 �C temper-
ature, Smayda and Mitchell-Innes, 1974) and reported repeatedly
from the ballast water samples (Gollasch et al., 2002).

However, there is another pitfall in metabarcoding application,
related to the method’s quantification capacity. Although eDNA
concentration and number of sequences yielded from NGS are pos-
itively correlated with biomass or population density, estimates of
absolute abundance remain elusive (Kelly et al., 2014). So far this
approach cannot be applied independently for robust quantifica-
tion and assessment of surviving taxa, but rather used as additional
technique for biodiversity screening (e.g. if there are some doubts
of non-compliance with BWM Convention, or a need for species-
based risk assessment). For the putative samples or taxa more
detailed further molecular analysis would be advised.

The use of multiple markers is often recommended for metabar-
coding purposes, since it allows reducing amplification bias (Kelly
et al., 2014). For instance, in the current dataset some inconsistenc-
es between visual analysis, RBC and COI could be explained by the
specificity of the applied primers (e.g. Wilcox et al., 2013). In NGS
results, copepods, arrow worms, nematodes were highly underrep-
resented. On the other hand, water molds, amoebas and rotifers
were largely overlooked in the conventional analysis, but detected
with COI marker instead. Genetic detection of most algae was pos-
sible only with the specific RBC primers. Indeed, the difference
between the results obtained here from specific (RBC specific for
diatoms; Stoof-Leichsenring et al., 2012) and more generalist
(miniCOI; Meusnier et al., 2008) primers is enormous. Without
the specialist primers diatoms, but also green and yellow algae,
would remain inadvertent or highly underestimated in this study.

Since true universal primers annealing with same preference to
all living taxa do not exist yet, we would suggest using primers
cocktails for targeting a wider taxonomic spectrum as recom-
mended by other authors as well (e.g. Valentini et al., 2009;
Ivanova et al., 2007). Particularly, targeting diatoms more specifi-
cally is highly desirable on the short voyage legs, while community
remains phytoplankton-dominated (Fig. 5). Diatoms are generally
overlooked in conventional ballast water surveys due to light silic-
ification of some taxa or resting stages present (Antia and Cheng,
1970; McCarthy and Crowder, 2000). We would also suggest repli-
cating NGS from the same environmental sample employing differ-
ent primer sets, specifically designed for the more problematic
taxonomic groups (Jerde et al., 2011; Wilcox et al., 2013) and more
particularly those expected to be found and survive in ballast
water. This might improve the utility of this novel methodology
for ballast water management issues.

This study was an experimental survey and not a real experience
of ballast water monitoring. For the robust risk assessment, a bigger
sampling effort, targeting different areas of the tanks and including
sediments is recommended (Gollasch, 2006). The results of a survey
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(counts of living biota) might also be affected by the uneven distri-
bution of organisms within ballast tanks, sampling induced damage
and mortality (particularly when pumping the water through the
sounding pipe) or organism loss during the sample concentration
(Gollasch et al., 2007). Hence, the application of more sensitive
and specific molecular techniques would be particularly advanta-
geous as a complementary measure for species detection and iden-
tification. NGS application has resulted in interesting findings and
provided significant added value to the study outcome, even within
the comparatively small-scale experiment. As a conclusion we
would like to summarize the strengths and weaknesses of metabar-
coding application for ballast water surveys in comparison to the
conventional (visual) approach (Table 2).

5. Conclusions

Although based on a single experimental study, the results
allow us to recommend some actions for improving the efficacy
of ballast water surveillance and management employing next
generation molecular technologies. First, using metabarcoding or
any other molecular methodology for ascertaining the taxonomic
status of organisms contained in ballast water samples is desirable,
especially for taxa where microscopic identification is doubtful or
very laborious. Second, molecular ballast water monitoring is rec-
ommended to occasionally verify the positive results of control
surveys (zero counts of ballast water organisms), because
outbreaks of resistant species can be produced even in adverse
conditions and overlooked by conventional analysis. Third, com-

bining different methods (e.g. de visu surveys and metabarcoding)
considerably improves the power of monitoring protocols.
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Appendix II 

 
Physiological tolerance: Temora longicornis – Acartia longiremis     

 

Anette Maria Christensen (DTU-Aqua, P2), Jörg Dutz (IOW, associated with P2) 

 

Methods and results 

Methods 

Temora longicornis 

Rates of ingestion, respiration, egestion, egg production and egg hatching success of two 

populations of Temora longicornis were compared at 4 different salinities of 10 (control), 8, 7 and 

6. Experimental animals were obtained from laboratory cultures originating from the Bornholm- 

(55°15,0'N – 15°59,0'E) and the Gotland Basin (57°19.2'N – 20°03.0'E), and are, hereafter 

termed Temora longicornis “Bornholm” and “Gotland”, respectively. Both cultures were 

established >3 months prior to experiments and kept for several generations at a salinity of 10 

(control). The temperature during culturing and experiments was 10°C which is within the natural 

range experienced by T. longicornis in the Baltic Sea (Dutz et al. 2010, Dutz et al. 2012). 

Seawater dilutions were prepared by mixing 0.2 µm-filtered sea water of 34 and MilliQ water. 

Final salinity was checked using a WTW 3210 conductivity meter. In order to minimize stress to 

experimental animals, they were gradually acclimated to experimental conditions in dilution 

steps of 1 every 24 h. The final acclimation to experimental salinity and food conditions lasted for 

24 h. During the experiments, copepods were fed the cryptophyte Rhodomonas salina taken 

from batch cultures during exponential growth, grown at the various experimental salinities and 

supplied at a concentration of 150 µg C l–1. This food level is below saturation for T. longicornis 

(Gonçalves et al. 2014), which should allow for a better detection of salinity effects on copepod 

physiology, as excess food may mask the effect of salinity on physiological adaptations and 

energy budget (Jonasdottir et al. 1998). Nonetheless, this food level is commonly found in the 

Bornholm Basin (Dutz et al 2010). 

Feeding, egg production and egestion experiments: For each salinity treatment, 7 recently 

molted adult females and 2 adult males were transferred to each of 4 replicate 610 ml bottles 

filled with the experimental suspension. Three control bottles contained the same algal 

suspension but without copepods to determine algal growth. All bottles were sealed to prevent 

air bubbles, and placed on a rotating wheel (1 rpm) with a natural light:dark cycle. Feeding was 

estimated as ingestion (I; µg C ind.–1 d–1) according to Frost (1972) by counting initial and final 

cell numbers after 24 h with a CoulterCounter Multisizer3 Coulter counter in both experimental 

and control bottles; ingestion was then calculated as the product of filtration rate times food 

concentration averaged during the incubation period, and the number of surviving copepods 

recorded. Surviving females were transferred to 4 new replicate 610 ml bottles for egg 

production experiments. After 24 h, the contents of the bottles were sieved onto a 30 µm mesh 

and rinsed into culture plates, the number of surviving females recorded and removed, and all 

the eggs and fecal pellets counted (dissection microscope at 40×) to estimate egg production 

rates (eggs ind.–1 d–1) and pellet production rates (pellets ind.–1 d–1). Also, 30 eggs (diameter) 
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and 30 pellets (length and width) were measured for each experimental culture and salinity 

(inverted microscope at 40×).  

Respiration experiments: The surviving females were placed into 250 ml beakers with 

experimental food suspension for 2 h prior to respiration measurements. For each of the cultures 

and salinity treatments respiration was measured in groups of 3-4 females. Respiration rates 

were measured with a UniSense “MicroRespiration System” with a micro-sensor (Clark-type) 

that measures oxygen partial pressure every 20 seconds and the software delivers all measured 

oxygen values and an average rate of consumption. Females were placed in respirometer glass 

chambers (volume ~2000 µl) filled with new pasteurized filtered seawater matching the various 

salinity treatments but without any food added. The glass chambers were completely sealed 

when immersed in the water bath with a constant temperature of 10 ⁰C (±0.1). Respiration was 

then measured through a thin capillary in the chamber lids with the micro-sensor. The first 5 

minutes after entering the micro-sensor were used for the animals to adapt to the new 

environment, and the next 10 minutes were for measuring the respiration. When a sample was 

finished the copepods were stored in Petri dishes for later measurements of prosome length for 

carbon content calculations. Background respiration from the pasteurized filtered seawater was 

measured at least 4 times for all experiments in order to subtract respiration from bacteria or 

other material in the seawater and glass chambers. 

Results 

Ingestion rates of both Temora longicornis ‘Bornholm’ and ‘Gotland’ were related to 

environmental salinity and decreased by more than 50% over the experimental salinity range 

(Fig.1). A disproportional large reduction was observed from 10 to 8. Rates decreased from 2.14 

and 2.02 µg C ind.-1 d-1 at a salinity of 10 to 0.87 and 1.06 µg C ind.-1 d-1 at a salinity of 8 for T. 

longicornis “Bornholm” and “Gotland”, respectively. For the “Bornholm” culture, ingestion in the 7 

PSU treatment was 0.96 µg C ind.-1 d-1, thus in the same range as the 8 PSU treatment, but 

decreased to 0.54 µg C ind.-1 d-1 in the 6 PSU treatment. For the “Gotland” culture, ingestion rate 

in the 6 PSU treatment was 1.09 µg C ind.-1 d-1 thus approximately equal to that of the 8 PSU 

treatment.  

 

In contrast to ingestion rates, egg production at a salinity of 8 did not differ substantially from that 

at a salinity of 10 (Fig.2). Differences between Temora longicornis “Bornholm” and “Gotland” 

were neglectible. At a salinity of 8 egg production was 5.88 eggs and 5.46 eggs female-1 d- for 

“Bornholm” and “Gotland”, respectively; at a salinity of 10, rates were only slightly higher with 

6.82 and 6.02 eggs female-1 d-1 for “Bornholm” and “Gotland”, respectively. A substantial 

decrease in egg production by more than 55% occurred in T. longicornis “Bornholm” at both a 

salinity of 7 and 6. Values decreased to 3.02 and 2.92 eggs female-1 d-1, respectively. At a 

salinity of 6 egg production was reduced by 66% (2.03 eggs female-1 d-1) in females originating 

from the “Gotland” culture. 
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Figure 1: Ingestion rates for the two different Temora longicornis cultures; x-axis represents the 

salinity treatments and y-axis denotes the amount of carbon ingested per individual per day. 
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Figure 2: Egg production for the two different Temora longicornis cultures; x-axis represents the 

salinity treatments and y-axis denotes the amount of eggs produced per female per day. 
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Figure 3: Fecal pellet production for the two Temora longicornis cultures; x-axis represents the 

salinity treatments and y-axis denotes the amount of pellets produced per individual per day. 

 

The tendencies for metabolic demand between the two experimental cultures were different 

(Fig.4); the “Bornholm” culture showed somewhat stable metabolic demand in 10, 8 and 7 PSU, 

with respiration rates of 0.089, 0.094 and 0.1  µL O2 ind.-1 h-1 but with a decreased respiration 

rate in the 6 PSU treatment, with 0.079 µL O2 ind.-1 h-1. For the “Gotland” culture the metabolic 

demand increased in both the 8 and 6 PSU treatment with 0.106 and 0.11 µL O2 ind.-1 h-1 

compared to the 10 PSU treatment (0.096 µL O2 ind.-1 h-1).  

Conclusions and outlook 

The two different populations of Temora longicornis originating from the Bornholm and the 

Gotland Basins generally displayed high acclimation tolerance to salinities as low as 6, which 

seems to be a critical limit in terms of survival as none of the animals from the Bornholm 

population survived the acclimation to a salinity of 5. However, feeding rates were strongly 

related to salinity and decreased with decreasing salinity, while egg production was strongly 

affected when salinity was below 7. A salinity of approximately 7 appears critical to both 

populations with regard to the species vital rates as the decreased feeding rates cannot sustain 

reproduction. Due to climate change with future projected increased precipitation and river run-

off, the salinity is expected to decrease. Our results suggest that decreasing salinity is likely to 

have a strong influence on distribution and abundance of T. longicornis in the Baltic Sea. 
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Figure 4: Respiration rates for the two cultures of Temora longicornis; x-axis shows the various 

salinity treatments, and y-axis shows respiration rate in µL oxygen used per individual per hour. 

 

Methods 

Acartia longiremis 

Due to general difficulties in culturing Acartia longiremis in the laboratory, experiments to 

evaluate the species salinity tolerance and lower threshold were conducted in the field. During a 

cruise of R/V Dana to the Baltic Sea in September 2015, rates of ingestion, egg 

production/hatching, respiration and survival of females in relation to environmental salinity were 

determined. A. longiremis was sampled with a 100 µm WP-2 net equipped with a non-filtering 

cod end and a closing device. Because females inhabit generally the cooler water layer below 

the seasonal thermocline during summer, net hauls were generally done in the deeper bottom or 

intermediate water layer and closed before entering the warm surface layer. Net catches were 

immediately transferred into water from those depth layers at which they were sampled and 

brought into a walk-in cooling chamber set to a common temperature of 10 ˚C. Experiments 

were done at two locations. In the Arkona Basin, females were caught in the bottom layer (54° 

58’ N, 14° 03’ E) at a salinity of 14-16 and temperature of 10-14 ˚C. These animals were used in 

experiments to determine vital rates of A. longiremis occurring at higher salinity. Feeding, egg 

production and respiration of females were determined at a salinity of 16 and the survival 

thresholds of females subjected to immediate salinity change were tested at a salinity of 16, 12, 

10, 8, 7, 6 and 5. In the Bornholm Basin (55° 17’ N, 15° 43’ E), females caught at a salinity of 

7.5-7.9 and a temperature of 7.3-10.5 ˚C were used to determine vital rates as well as survival 

thresholds of females either subjected to immediate salinity change or after acclimation at 

salinities of 7.7 (in-situ), 6, 5, 4 and 3. For acclimation, females were kept in several groups of 

200-300 in 10 L buckets. Salinity was lowered by additions of MilliQ water at a rate of 1 d-1.  
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Feeding and egg production: Specimens used in experiments were picked from net catches 

within 2 hours following the catch or from the acclimated cultures. For each salinity treatment, 

between 10-20 females were placed in each of 4 replicate 610 ml bottles filled with the 

experimental food suspension. The variable number of females was used in order to ensure a 

significant difference between grazing and control bottles at decreasing salinity when feeding 

rates decreased as well. Food suspensions consisted of mixtures of the cryptophyte 

Rhodomonas salina of 50 µg C L-1 and the heterothrophic dinoflagellate Oxyrrhis marina of 100 

µg C L-1, each grown at the respective salinity used in experiments. Females were acclimated to 

experimental conditions for 24 h and subsequently transferred to new bottles in order to 

determine feeding rates and, after an additional transfer, egg production for another 24h. In 

addition to grazing bottles, two types of controls were conducted. One consisted of pure 

suspensions of R. salina in order to control its growth rate; the other consisted of the same 

mixture of R. salina and O. marina as used in grazing experiments but without grazers in order 

to determine O. marina growth and its consumption of R. salina. Controls were run in triplicate. 

Samples for initial and final cell concentrations were counted using a Coulter Multisizer Model 3 

(R. salina) or the microscope (in the case of O. marina) using the Utermöhl technique after 

settling 3.5 mL of the sample. Ingestion rates of O. marina and A. longiremis were estimated 

from changes in prey cell numbers in treatments compared to those in controls using an iterative 

approach (Tang et al. 2001). In order to estimate egg production rates (eggs ind.–1 d–1), the 

contents of the bottles were sieved onto a 30 µm mesh and rinsed into plastic petri dishes. Eggs 

were counted and incubated until eggs started to hatch. After additional 48 hours, eggs and 

nauplii were fixed with Lugol and counted to estimate egg hatching success. 

Respiration experiments: Surviving females were placed into 250 ml beakers with experimental 

food suspension for 2 h prior to respiration measurements. For each of the cultures and salinity 

treatments respiration was measured in groups of 3-4 females. Respiration rates were measured 

using a UniSense “MicroRespiration System” with a micro-sensor (Clark-type) that measures 

oxygen partial pressure every 20 seconds and the software delivers all measured oxygen values 

and an average rate of consumption. Females were placed in respirometer glass chambers 

(volume ~2000 µl) filled with new pasteurized filtered seawater matching the various salinity 

treatments but without any food added. The glass chambers were completely sealed when 

immersed in the water bath with a constant temperature of 10 ⁰C (±0.1). Respiration was then 

measured through a thin capillary in the chamber lids with the micro-sensor. The first 5 minutes 

after entering the micro-sensor were used for the animals to adapt to the new environment, and 

the next 10 minutes were for measuring the respiration. When a sample was finished the 

copepods were stored in Petri dishes for later measurements of prosome length for carbon 

content calculations. Background respiration from the pasteurized filtered seawater was 

measured at least 4 times for all experiments in order to subtract respiration from bacteria or 

other material in the seawater and glass chambers. 

Survival: For the survival experiments, groups of 200-300 females were sorted into 10 L buckets 

filled with seawater of a salinity of 16 (Arkona Basin) or of 7.7 (Bornholm Basin) and fed with the 

similar food suspension as in feeding experiments. Two types of experiments were conducted. 

In the first type, 30-40 females taken from the 10 L cultures were subjected to an immediate 

change in salinity to 12, 10, 8, 7, 6 and 5 in case of females from the Arkona Basin and 7, 6, 5, 

4, and 3 in case of females from the Bornholm Basin. Females kept in original salinity served as 
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control. In the second type conducted only with females from Bornholm Basin, the groups of 

200-300 females were slowly acclimated to a reduced salinity of 7, 6, 5 and 4 at a rate of 1 per 

day. After acclimation, females were again subject to an immediate reduction in salinity as in the 

former experiments. All females were incubated in groups of 5-7 in dishes of 20 ml and checked 

for survival every 2 hours during the first 12-16 h of the incubation and thereafter every 6-8 

hours over a period of 5 days. Females were assigned to 3 categories: active, incapacitated and 

dead. Healthy and active females showed regular hop and sink behavior and responded 

immediately to fluid disturbance induced by pipette suction. Incapacitated females showed 

reduced pipette avoidance and activity. 

 

Results 

Ingestion rates of female Acartia longiremis were related to salinity (Figure 5). At a salinity of 16 

females from the Arkona Basin ingested on average 0.56 µg C Ind.-1 d.-1. This is about 30% 

above those rates of 0.41 µg C Ind.-1 d.-1 of females from the Bornholm Basin determined at an 

in-situ salinity of 7. When the salinity was decreased to 6, 5 and 4, ingestion rates substantially 

decreased to 0.28, 0.18 and 0.15, respectively, which is 63-31% of those rates at a salinity of 7. 

The diet A. longiremis consisted of both Rhodomonas salina and Oxyrrhis marina, except at a 

salinity of 4 at which only Rhodomonas was ingested. 

 
Figure 5: Ingestion rates (µg C fem-1 d-1) of Acartia longiremis females at different salinity.  
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Figure 6: Egg production and egg hatching rates (eggs fem-1 d-1) of Acartia longiremis females 

at different salinity.Note that no eggs were produced at a salinity of 4.  

Egg production of females was generally low. Females produced eggs at a salinity ranging from 

16 to 5, at a salinity of 4 reproduction ceased. At a salinity of 16 to 5, egg production was related 

to salinity and decreased from 0.64 to 0.15 eggs Ind.-1 d.-1. Hatching of eggs was based on a low 

number of eggs produced by females and, therefore, has to be interpreted with care. 

Nevertheless, no relationship of hatching success to salinity was detected. Hatching rates of egg 

at a salinity of 16 were on average 89 ± 14 % and only slightly higher than that of females 

incubated at an in-situ salinity of 7 or reduced salinities of 6-5 ranging from 72± 39 % to 76± 24 

%. 

Respiration was highest at a salinity of 16 (0.10 µl O2 Ind.-1 h-1) and lowest at a salinity of 4 (0.55 

µl O2 Ind.-1 h-1). Nevertheless, there was no clear relationship of respiration to salinity because 

rates at a salinity of 5-7 were more or less similar (Figure 7). 

 
Figure 7: Respiration rates (µl O2 Ind.-1 h-1) of Acartia longiremis females at different salinity. 
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Acartia longiremis collected from the Arkona Basin showed a broad tolerance to an immediate 

reduction in salinity. When females were exposed to salinity of 16-10, no visible incapacitation 

was detected and survival remained >90 % at the end of the 5 day incubation period. Females 

exposed to a lower salinity of 8-5 were incapacitated only during the first 24 hours of the 

exposure. The visible effects vanished with time and mortality remained generally low. At a 

salinity of 7-8, survival rates of >88% were still high and similar to those at higher salinity, while 

survival decreased to 83% and 70% after 5 days at a salinity of 6 and 5, respectively (Figure 8). 

 

 
 

Figure 8: Effects of instantaneous decrease in salinity on activity and survival of females 

originating from a salinity of 16 (Arkona Basin). 

 

Acartia longiremis collected in the Bornholm Basin at a salinity of 7.5-7.9 were less sensitive to 

low salinity than those from the Arkona Basin. Survival was generally high at salinities from 7.7 

to 5; after 5 days of incubation more than 90% remained alive and healthy. A salinity below 5 

was critical for the species survival. At a salinity of 4, more than 36 % of the females were 

incapacitated or dead after 5 days. At a salinity of 3, less than 25% of the females were active 

during the first 6h of the incubation, none of the females survived. Acclimation of the population 

to lower salinity prior to the experiment had only small effects on survival. When females were 

acclimated to a salinity of 5, survival remained at 100% during the incubation. Mortality at a 

salinity of 4 and 3 was also less severe during the first days when females were acclimated to 

salinities less than 7.7. Nevertheless, the proportion of females that were dead after 5 days was 

similar in all experiments (Figure 9). 
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Figure 9: Effects of instantaneous decrease in salinity on activity and survival of females 

originating from a salinity of 7.7 (Bornholm Basin) and acclimated to a lower salinity of 7 to 3 at 1 

d-1. 
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Conclusions and future perspectives 

Females of two different populations of Acartia longiremis originating from the Arkona and the 

Bornholm Basins displayed a broad salinity tolerance. Survival, feeding and egg production were 

strongly related to salinity and decreased with decreasing salinity. The results suggest a similar 

response to decreasing salinity as already described for other brackish Acartia, with higher rates 

at intermediate salinity (>10) and gradual decreases at lower salinity (Calliari et al. 2006). 

Nevertheless, A. longiremis appears to be more tolerant to decreasing salinity compared to 

another marine Acartia congener, A. clausi (Calliari et al. 2006). This explains the restriction of 

the distribution of the A. clausi to the Kattegat, while A. longiremis has a broad distribution in the 

Baltic Sea. A salinity of 5 appears critical to the population of A. longiremis with regard to the 

species vital rates. Although females were still able to produce some eggs at this salinity and 

survival was generally high, the rate of reproduction is likely too low to sustain populations in the 

Baltic and account for additional mortality by predation. At a salinity of 4 decreased feeding rates 

were not sufficient anymore to sustain reproduction and high survival of the species. This 

suggests that the species might not be robust enough against the anticipated worst case 

changes in of salinity in the central Baltic Sea (e.g., Meier et al. (2012)). The comparison of 

survival to instantaneous changes in salinity suggests that population differences exist in the 

physiological ability to respond to salinity changes. Females originating from a salinity of 14-16 

PSU in the Arkona Basin displayed a higher mortality to the reduction of salinity to 6 and 5 

compared to females isolated at a salinity of 7.8 in the Bornholm Basin. However, females from 

Bornholm that were acclimated to salinities of 6-4 before their response to instantaneous 

reduction in salinity was tested, displayed no differences in sensitivity to low salinity and had a 

broad salinity tolerance. Such difference between populations may be caused by the use of 

those females surviving the acclimation to low salinity. Nevertheless, more than 70% of females 

from Arkona Basin survived the instantaneous reduction of salinity from 16 to 5 after 5d of 

incubation. This indicates physiological and potentially genetic diversity exists in the Arkona 

population that allows the species to prosper in areas with lower salinity such as the Bornholm 

Basin. Investigations of reaction norms and common garden experiments are required to 

evaluate this. 
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APPENDIX III 

Effects of salinity and temperature on the development of the Baltic Sea copepod 

Eurytemora affinis 

Simona Puiac, Konrad Karlsson, Monika Winder (Stockholm University, P4) 

Introduction 

In aquatic systems, species physiological tolerance to environmental variables affects their 

spatial and seasonal distribution, which will be highly influenced by future climate change. For 

the Baltic Sea, predictions are that the system is getting warmer and fresher. A key question is 

how species will be affected by these changes and what the consequences at the communities 

and ecosystem level would be. Copepods are a major trophic link between primary producers 

and fish. Calanoid copepods (along with cladocerans) are primary prey and highly important for 

the growth and survival of herring (Clupea harengus) and sprat (Sprattus sprattus) in the Baltic 

Sea. Eurytemora affinis is one of the key species with major influence on herring recruitment. 

Due to their role in maintaining the fish stocks it is important to understand copepods ability to 

cope with future climate change. 

 

Eurytemora affinis (Poppe) is a euryhaline calanoid copepod with a widely distribution in the 

Northern hemisphere. It commonly inhabits brackish systems, often being a dominant species in 

zooplankton communities of European estuaries and North America. Despite its preference for 

brackish conditions, this species is also known to invade freshwater, demonstrating high 

adaptability, capable of using osmoregulation as a response to fluctuating salinities. E. affinis is 

an egg-bearing species and after hatching undergoes a nauplius phase (larval phase) and a 

copepodite phase (juvenile phase) before reaching adulthood. After the first phase consisting of 

6 naupliar stages, larva metamorphose into juvenile with 5 distinct stages (copepodite stages), 

which ends with the adult state. Feeding, mortality, swimming behavior or predation pressure 

differs between development stages. For these reasons assessing the effects of environmental 

factors should be made considering each stage or group of stages. 

Considering their key role in ecosystem functioning understanding the effects of climate change 

on copepods populations is highly important. Here we investigated the tolerance of different E. 

affinis populations from the Baltic Sea to changing temperature and salinity. For this copepod 

species our study is the first to assess temperature and salinity effects on development by 

individual follow up. 

 

Materials and methods 

 

Zooplankton samples were collected at the Askö area (sampling station B1), the Pärnu Bay (part 

of the Gulf of Riga) and Bothnian Bay. Individual E. affinis (different copepodite stages and 

adults) were used to establish a base culture in a 10L plastic bucket at 15°C and salinity of 6 ppt 

under constant gentle aeration and a 12L: 12D photoperiod. Artificial seawater was obtained by 

mixing Instant Ocean® sea salt with tap water. Water was changed twice a week. Copepods 

were fed ad libitum with the cryptophyte algae Rhodomonas sp, cultured on a F2 media (20 ppt).  

For the Askö population we conducted four experiments in a factorial design with two different 

temperatures (15 and 20°C) and two salinities (6 ± 0.5 and 2± 0.5). The treatments were named 
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as follows: T15/S6, T15/S2, T20/S6 and T20/S2. For each treatment 15-20 egg bearing females 

were pooled from the base culture and placed individually in 25 ml glass flasks at the 

experimental conditions (Fig. 1). After the eggs hatched females were removed and nauplii were 

checked (water change, feeding) every day. When the majority of the individuals reached 

juvenile phase, 10-15 pairs (1 C5 female and 1C5 male) were formed and each was placed 

individually in 25 ml glass flask. Clutch size, hatching success and number of spermatophores 

were recorded every day. Four nauplii from each female from the 1st clutches and three from the 

following 2nd to 5th clutches were placed individually in 10 ml plastic beakers (Fig. 1). Their 

developmental stage was checked every day or every second day until adulthood or death. 

Different nauplii (N1, N2, N3, N4, N5 and N6), copepodite (C1, C2, C3, C4, and C5) and adult 

stages (A) were identified under the microscope. 

 

For the Pärnu Bay (part of the Gulf of Riga) and Bothnian Bay populations all the experiments 

were performed at 20°C, at four different salinities (0.5, 5, 10 and 15). For each area 10 clutches 

(from 10 different females) were used. Each clutch was split in 8 groups of eggs (3-7 

eggs/group), which were exposed individually to the different salinity conditions. For each salinity 

treatment 2 groups of eggs were used from all the 10 clutches. After hatching development 

stage of individuals were checked daily until maturity/death. Hatching success, survival and time 

to metamorphosis/ adulthood was recorded and means for each group were calculated.  

 

Results 

 

Effects of temperature and salinity on development 

 

Development time was influenced by both temperature (Welch’s ANOVA, p< 0.001, F (1, 183) =64) 

and salinity (Welch’s ANOVA, p< 0.001, F (1, 68) =61). An increase in temperature from 15 to 20°C 

led to faster development and adulthood at 20°C was reached 2.8 days earlier at 6 ppt (ANOVA, 

p< 0.001, F (1, 141) =47) and 1.5 days earlier at 2ppt compared to 15°C (ANOVA, p=0.001, F (1, 55) 

=12) (Fig. 1). A decrease in salinity from 6 to 2 ppt caused a delay in development, which was 

3.3 days later at 15°C (Welch’s ANOVA, p<0.001, F (1, 59) =50) and 2 days later at 20°C (Welch’s 

ANOVA, p=0.02, F (1, 16) =6). The combined effect of salinity and temperature resulted in the 

fastest development at T20/S6 (11.8 days) and the slowest at T15/S2 (16.6 days) (Welch’s 

ANOVA, p< 0.001, F (1, 48) =123). Furthermore, there was no significantly different in the 

development of the copepods reared at T15/S6 and T20/S2 (Welch’s ANOVA, p=0.6, F (1, 17) =0). 

Development time variability among individuals was high, with some individuals having faster 

development at 15°C compared to others at 20°C. Also, despite the general trend, some 

individuals developed faster at the lower salinity. The offspring of some females had faster 

development at T15/S6 (ANOVA, p< 0.001, F (4, 58) =6) and T15/S2 (ANOVA, p< 0.01, F (6, 24) =4) 

(Fig.2.). 

 

For two of our treatments, males completed development earlier than females. The difference 

was 1.8 days at T15/S2 (ANOVA, p= 0.02, F (1, 39) = 5) and 1 day at T20/S6 (ANOVA, p <0.001, F 

(1, 78) =13).  

Larval phase was shorter than juvenile phase at T15/S6 (Welch’s ANOVA, p< 0.001, F (1, 84) = 

137), T15/S2 (ANOVA, p< 0.001, F (1, 80) = 22) and T20/S6 (Welch’s ANOVA, p< 0.001, F (1, 151) = 



39 
 

199), while at T20/S2 the difference was not significant (ANOVA, p= 0.14, F (1, 30) = 2). 

Temperature increase caused a shortening of both phases at 6 ppt (Welch’s ANOVA, p< 0.001, 

F (1, 166) = 59 for nauplius; p< 0.001, F (1, 189) = 33 for copepodite), while at 2 ppt only the nauplia 

phase was affected. Salinity decrease had the opposite effect and individuals needed more time 

to complete each phase (Welch’s ANOVA, p< 0.001, F (1, 80) = 31 for nauplius; p < 0.001, F (1, 59) = 

54 for copepodite) at both salinities. For the individuals from Pärnu bay (part of the Gulf of Riga), 

the development was significantly influenced by salinity (ANOVA, p< 0.001, F (3, 33) =16). While at 

the higher salinities (5, 10, 15) development was completed in 10, 11 and respectively 12 days, 

a significant slowdown was encountered at 0.5 and maturity was reached in 18 days (Tukey, p< 

0.001) (Fig.1.). These differences are explained by the significant effect of salinity on the 

duration of the juvenile phase (ANOVA, p< 0.001, F (3, 33) =12), which was longer at 0.5 ppt 

compared to the higher salinities. Larval phase was unaffected by the salinities changes 

(ANOVA, p=0.2, F (3, 37) =1). Bothnian Bay individuals had a development time of ~14 days at 

both 10 and 15 ppt (ANOVA, p= 0.9, F (1, 2) = 0). However, the decrease in salinity from 15 to 10 

caused a shortening of the larval phase (ANOVA, p< 0.001, F (1, 14) =11), while the juvenile phase 

was not affected (Welch’s ANOVA, p=0.6, F (1, 2) =0). Individuals from Bothnian Bay had longer 

larval phase at both 10 (ANOVA, p< 0.01, F (1, 13) =16) and 15 ppt (ANOVA, p< 0.01, F (1, 14) =25).  

 

Copepods from Pärnu Bay (part of the Gulf of Riga) reared at 0.5 ppt had longer juvenile phase 

(ANOVA, p=0.04, F (1, 7) =6), while for the Bothnian Bay population at 15 pp the opposite situation 

was found (Welch’s ANOVA, p=0.02, F (1, 2) =45). 

 

 
Fig.1. Development time to metamorphosis and adulthood in response to different conditions. A, 

B Age (days) of the individuals from Gulf of Riga and Bothnian Bay at the time of metamorphosis 

and maturity as function of salinity. Values are means of replicate clutches ± SE. C, Age of the 

individuals from Askö at the time of metamorphosis and maturity as function of salinity and 

temperature (two different temperatures and two salinities). Values are means of individuals 

from all clutches ± SE. 

 



40 
 

 

 
Fig.2. Variability in reaching adulthood for copepods from Askö area.  Values represent 

development time for each individual reared at the four experimental treatments.  

 

Hatching success  

 

The mean clutch size was ~21 (eggs/female/clutch) and was not affected neither by temperature 

(ANOVA, p=0.2, F (1, 135) = 0) nor by salinity (ANOVA, p=0.6, F (1, 135) = 1).  

At T15/S6, five females released the eggs individually (during 6 consecutive clutches), which is 

unusual for an egg-bearing species. Because those eggs did not hatch during the next 6 days, 

hatching success was considered 0. In general eggs hatched directly from the clutch attached to 

the female, or after the release of the entire clutch. In some occasions eggs were observed to be 

degraded soon after clutch extrusion and no hatching occurred. This observation was mostly 

made at T20/S2. 0 values were excluded from the analysis.  

At 15°C salinity decrease had a negative effect on hatching success, which dropped from 94% 

to 54% (Welch’s ANOVA, p<0.001, F (1, 31) =39) (Fig.3.). At 20°C instead no significant effect was 

found. Temperature rise had same negative effect at 6 ppt (Welch’s ANOVA, p=0.001, F (1, 37) 

=12). At T20/S6 the eggs produced by some females had higher hatching success compared to 

others (ANOVA, p=0.01, F (7, 14) =5). 

For the Gulf of Riga and Bothnian Bay population, hatching success was not influenced by 

salinity changes (ANOVA, p= 0.3, F (3, 156 = 1). However, the difference between the areas were 

significant (Welch’s ANOVA, p<0.001, F (1, 127) =71) and the eggs originating from the Gulf of 

Riga had higher hatching success than the ones from the Bothnian Bay at all four salinities 

(Fig.3.). 

For both areas a maternal effect was revealed, the eggs of some females having higher hatching 

success compered to others (Gulf of Riga: ANOVA, p<0.001, F (9, 70) =19; Bothnian Bay: ANOVA, 

p<0.001, F (9, 70) =7). 
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Fig.3. Hatching success in terms of percentage of total number of eggs that hatched per 

replicate cluch. A) Hatching success of the clutches originating from Gulf of Riga and Bothnian 

Bay as a function of salinity. B) Hatching success of the clutches originating from Askö as 

function of salinity and temperature. Values are means of replicate clutches ± SE. 

 

Survival 

 

For the Askö population, salinity decrease negatively influenced the survival of the copepods at 

15°C (ANOVA, p<0.001, F(1,35)= 29) as well as 20°C (ANOVA, p<0.001, F(1,30)= 18) (Fig.4.). 

Temperature increase had the same effect at 2 ppt (ANOVA, p=0.02, F(1,41)= 6), but no 

significant influence at 6 ppt. The differences in survival were significant between T15/S6 and 

T20/S2, as well as between T20/S6 and T15/S2. The survival was higher among the copepodite 

stages than nauplii at T15/S6 (ANOVA, p= 0.02, F (1, 8) = 7) and T20/S6 (ANOVA, p= 0.001, F (1, 

18) = 13).  The percentage of individuals that survived to adulthood was higher for the Gulf of 

Riga area (ANOVA, p< 0.01, F(1,76)= 8) (Fig.4.). Salinity has shown a significant influence for this 

area (Welch’s ANOVA, p< 0.01, F(3,33)= 6), with lower survival at 0.5 ppt (15%) compared to 10 

(56%) and 15 (63%) (Tukey, p<0.01). No significant difference was found in survival of the 

copepods from Bothnian Bay.  Within all treatments there was no significant difference between 

the survival of naupliar and copepodite stages. Nauplii as well as copepodites from the Gulf of 

Riga had higher survival than the ones from Bothian Bay (Welch’s ANOVA; nauplii: p< 0.001, 

F(1,118)= 50; copepodites: p< 0.001, F(1,112)= 44) at all four salinities. Salinity had no effect on 

nauplii survival for none of the areas, while the copepodites from Gulf of Riga had higher survival 

at 10 and 15 compared to 0.5 ppt (Tukey, p<0.01). 
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Fig.4. Survivorship in terms of percentage of total number of nauplii that survived to adulthood. 

A) Survival of individuals from Gulf of Riga and Bothnian Bay as a function of salinity. B) Survival 

of individuals from Askö as function of salinity and temperature. Values are means of replicate 

clutches ± SE. 

 

Discussion 

 

Using E. affinis individuals from three different areas (Askö, Pärnu Bay (part of the Gulf of Riga) 

and Bothnian Bay) our study reveals how survival, development time and hatching success are 

affected by temperature, salinity and the interaction between these two environmental factors. 

Our results revealed the most beneficial and detrimental conditions, and the manner in which 

stress manifested on our endpoints. Depending on the degree of stress to which they were 

subjected, the optimum condition proved to be T15/S6, while the combination of high 

temperature with low salinity the most detrimental (T20/S2).  

 

Assessing the survival to adulthood is a good method to evaluate copepods ability to cope with 

different environmental conditions. Highest survival (76%) of the Askö copepods at T15/S6 is an 

expected result considering that temperatures around 15°C are optimal for E.affinis and 6 ppt is 

the common salinity in this area. Lower survival found for the other treatments demonstrates that 

individuals were under osmotic (T15/S2), thermal stress (T20/S6) or both (T20/S2). Osmotic and 

heat shock has been shown for E. affinis and are associated with changes in protein expression. 

Even though copepods can adapt to osmotic stress by osmoregulation it is costly in terms of 

energy and dependent on the degree of stress. Considering this, our findings for the survival 

analysis suggest that at T15/S2 and T20/S6 the degree of stress was intermediate between the 

lowest (T15/S6) and highest (T20/S2).  

 

Low survival was found for both Bothnian Bay and Gulf of Riga populations. Anyhow it was 

higher for individuals from the latter one, and was influenced by salinity changes. These results 
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are in accordance with local environmental conditions in the two areas. Bohnian Bay is 

characterized by low salinity around 3 ppt, while in the Gulf of Riga the most encountered 

salinities are between 5 and 6.5 ppt. No individuals from Bothnian Bay survived at 0.5, 

suggesting that this population might be already at the lower tolerance limit for low salinities. 

High temperature of 20°C was another stress factor, leading to no survivors at 5 ppt as well. 

Even though the survival was low, individuals from Gulf of Riga coped better at the lower 

salinities. For this area higher survival would be expected at 5 ppt, our results suggesting that 

temperature had a strong negative effect.  

 

The interaction between temperature and salinity defines copepods fitness, and this is also 

revealed by our results. For the Askö population temperature increase from 15 to 20°C had no 

significant effect on survival at the optimum salinity (6ppt), but caused a major drop when 

combined with osmotic stress (2 ppt). Reared at 20°C, copepods from Gulf of Riga and Bothnian 

Bay had higher survival at 10 and 15 ppt compared to the lower salinities. This is in accordance 

with previous studies on E. affinis, which emphasized that tolerance for low and high salinities is 

decreasing as temperature increases. Yet the role of acclimation in survival at different salinities 

should not be disregarded. Acclimation to gradually increased salinities can lead to reduced 

mortality, especially when the test salinity approaches the final acclimation salinity. Thus our 

finding might have been different if we had used acclimation to gradually decreased salinities 

combined with gradually increased temperatures.  

 

The different treatments used in the present study proved to have an effect on post-embryonic 

development. An increase in temperature from 15°C to 20°C induced a more rapid development 

of the copepods from the Askö area. At the lower salinity (2 ppt) the difference is bigger, 

suggesting osmotic stress. These changes coincide with adjustments in the length of both 

nauplius and copepodite phase. Decrease salinity from 6 to 2 ppt had the opposite effect 

causing a slowdown in their development. Larger differences at 15°C were expected considering 

that for this population T15/S6 was optimal regarding both factors and only osmotic stress was 

imposed by T15/S2. At 20°C both treatments caused thermal discomfort with the addition of 

osmotic stress at T20/S2, leading to smaller differences. At T15/S2 slower metabolic rate 

(compared to 20°C) combined with the allocation of more energy for osmoregulation (due to low 

salinity) has lead to the slowest development among our treatments. To the opposite, the 

shortest generation time was found at T20/S6, due to increased metabolic rate and osmotic 

comfort. Hence our results regarding the Askö population point out that E. affinis post-embryonic 

development is determined by the interaction between temperature and salinity, which can 

impose high degree of stress.  

 

For the Gulf of Riga and Bothnian Bay populations salinity also proved to influence the 

development. At higher salinities individuals from Gulf of Riga had a faster development 

compared to the lowest. Even though the survival was not the highest, at 5 ppt the survivors had 

the most rapid development indicating that this salinity was in their comfort zone. Osmotic stress 

at 0.5 ppt caused a significant delay in development, despite the high temperature. An increase 

in salinity from 10 to 15 had no effect on the development time of the Bohnian Bay copepods, 

but influenced the larval phase, which was shorter at the former treatment. This suggests that 



44 
 

the degree of stress was higher at 15 ppt, considering the low salinities that characterized this 

area. 

 

In general, our results revealed faster development compared to other studies that used 

approximately same condition. Reared at 5.5 ppt, individuals collected from the Archipelago Sea 

(Northern Baltic) had a mean generation tine of 18.5 days at 15°C and 15.5 at 20°C 59. For E. 

affinis from the Seine estuary the development time was 16.7 days when reared at T15/S5 43. At 

T13/S5 individuals from St Lawrence and Lake Michigan needed 27 and 22.5 days respectively 

to reach adulthood. Chesapeake Bay population had also slower development at T14/S5 (15 

days) compared to our T15/S6 treatment. These differences show E. affinis capability to adapt to 

cooler or warmer conditions. The different clades inhabiting the European and North American 

estuaries also need to be considered.  
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         Appendix IV 

Effects of natural environmental conditions and shipping on the distribution of the 

invasive round goby 

J. Kotta; H. Ojaveer, K. Nurkse (UT-EMI, P6), R. Puntila (SYKE, P7) 

 

Paper by Kotta et al. is attached and serves as appendix 4 

Kotta, J.; Ojaveer, H.; Puntila, R.; Nurkse, K. 2016. Shipping and natural environmental 

conditions determine the distribution of the invasive non-indigenous round goby Neogobius 

melanostomus in a regional sea. Estuarine Coastal and Shelf Science, 169, 15-24. 

 

Introduction 

 

Introductions of non-indigenous species (NIS) are considered a major threat to aquatic 

ecosystems worldwide. While it is valuable to know the distributions and ranges of NIS, 

predictive spatial models along different environmental gradients are more useful for 

management of these species. In this study we modelled how external drivers and local 

environmental conditions contribute to the spatial distribution of an invasive species using the 

distribution of the round goby Neogobius melanostomus in the Baltic Sea as an example. Using 

the collected distribution data, an updated map on the species distribution and its invasion 

progress in the Baltic Sea was produced.  

Conclusions and future perspectives 

The current range of the round goby observations is extensive, covering all major sub-basins of 

the Baltic Sea. The most recent observations appeared in the northern regions (Northern Baltic 

Proper, the Gulf of Bothnia and the Gulf of Finland) and on the eastern and western coasts of 

southern Sweden. Modelling results show that the distribution of the round goby is primarily 

related to local abiotic hydrological conditions (wave exposure). Furthermore, the probability of 

round goby occurrence was very high in areas in close proximity to large cargo ports. This links 

patterns of the round goby distribution in the Baltic Sea to shipping traffic and suggests that 

human factors together with natural environmental conditions are responsible for the spread of 

NIS at a regional sea scale. 
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a b s t r a c t

Introductions of non-indigenous species (NIS) are considered a major threat to aquatic ecosystems
worldwide. While it is valuable to know the distributions and ranges of NIS, predictive spatial models
along different environmental gradients are more useful for management of these species. In this study
we modelled how external drivers and local environmental conditions contribute to the spatial distri-
bution of an invasive species using the distribution of the round goby Neogobius melanostomus in the
Baltic Sea as an example. Using the collected distribution data, an updated map on the species distri-
bution and its invasion progress in the Baltic Sea was produced. The current range of the round goby
observations is extensive, covering all major sub-basins of the Baltic Sea. The most recent observations
appeared in the northern regions (Northern Baltic Proper, the Gulf of Bothnia and the Gulf of Finland)
and on the eastern and western coasts of southern Sweden. Modelling results show that the distribution
of the round goby is primarily related to local abiotic hydrological conditions (wave exposure).
Furthermore, the probability of round goby occurrence was very high in areas in close proximity to large
cargo ports. This links patterns of the round goby distribution in the Baltic Sea to shipping traffic and
suggests that human factors together with natural environmental conditions are responsible for the
spread of NIS at a regional sea scale.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Humans have greatly accelerated the pace of interregional
migration of species globally. In aquatic environments, this occurs
mainly by transporting species in ballast water, on the hulls of
ships, or by releasing exotic aquarium species (Carlton and Geller,
1993). When species are released into new environments their
establishment success is affected by the intensity of the propagule
pressure for a given species (e.g., Lockwood et al., 2009; Simberloff,
2009;Wonham et al., 2013) and suitability of the habitat in relation
to the species' physiological tolerances (Lynch and Gabriel, 1987).
This explains why coastal areas of enclosed seas and estuaries,
characterized by intense transoceanic shipping and the presence of

a wide range of environmental conditions, are some of the most
highly invaded environments in the world (Carlton and Geller,
1993).

Accumulating evidence on successful invasion events, as well as,
failures of eradication of non-indigenous species (NIS) from the
invaded ecosystems, highlight the need for predictive tools for
evaluating the risks of invasions at specific locations. The rela-
tionship between the number of organisms initially released into
the environment and the risk of a successful invasion is theoreti-
cally understood (Drake, 2004; Courchamp et al., 2008). However,
these models often fail to predict species distributions (e.g., Taylor
and Hastings, 2005). In the real world, species invasions often
stem from large-scale and repeated releases (Wonham, 2008).
These processes are potentially characterized by vector-scale
models, which also match the scale at which many preventive
regulations are being developed (IMO, 2004; Albert et al., 2013; Lee
et al., 2013).

Practical challenges in measuring the propagule pressure
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associated with an invasion vector exist and proxy variables are
widely used in analyses to overcome such difficulties (Lockwood
et al., 2009; Simberloff, 2009; Haydar and Wolff, 2011). The ex-
pected shape of the riskerelease relationship is not clear, and both
linear and nonlinear models have been applied to empirical data
(Ricciardi, 2006; Reusser et al., 2013). Because of this variability,
machine learning techniques are a useful method to empirically
determine the shape and strength of risk-release relationships, as
they do not limit the outcome to pre-determined data models but
rather use an algorithm to learn the relationship between the
response and its predictors Thereby, machine learning techniques
can fit a diverse array of functional response curves (Hastie et al.,
2009).

The round goby, Neogobius melanostomus (Pallas 1814), is a
successful and widespread invader worldwide and is considered
one of the most invasive NIS in the Baltic Sea (Kornis et al., 2012). It
was first observed in the Baltic Sea in Poland in 1991 (Sk�ora and
Stolarski, 1993) and later recorded in several other areas of the
Baltic Sea (AquaNIS, 2014). Round goby is a territorial, aggressive,
and voracious generalist benthivore reported to prefer bivalves
when they are available (Marsden et al., 1997; Kornis et al., 2012).
As shipping is likely behind the invasion of the round goby (Sapota
and Sk�ora, 2005; Kornis et al., 2012), useful proxies for propagule
pressure include: distance to harbour, historic records of vessel
traffic, tonnage and ballast volume of ships. These proxies are easy
to define and therefore have beenwidely used in earlier bioinvasion
studies (Jazdzewski et al., 2005; Ricciardi, 2006; Lo et al., 2012;
Chan et al., 2013).

Apart from propagule pressure, extensive knowledge on envi-
ronmental tolerances of the species is needed in order to model
their distribution in the invaded ecosystem. Even though a region
may have a high probability for invasion, local biotic and abiotic
characteristics determine the success of establishment and repro-
duction (Lynch and Gabriel, 1987; Roura-Pascual et al., 2011).
Assessing environmental factors related to the presence of the
round goby therefore requires knowledge of the prevailing physical
and chemical conditions in the invaded locations. Once these
optimal conditions are empirically documented, the relationships
can be used to predict the probability of the presence of the round
goby along measured environmental gradients. Although consid-
ered one of the most invasive NIS in the Baltic Sea and worldwide,
development of a spatial predictive model for the round goby had
previously been hampered by a lack of information about its cur-
rent distribution and environmental preferences in the invaded
ecosystems (Shearer and Grodowitz, 2010; Ojaveer and Kotta,
2014).

In contrast to many native species, successful NIS often tolerate
broad ranges of environmental conditions and can even adapt life
history strategies to local conditions in the invaded environments
(e.g., reproduction, see Platt and Jeschke, 2014). Anthropogenic
transfer processes infer a bottleneck onNIS, which assures that only
the hardiest individuals arrive to the new location. Therefore, sur-
viving individuals will theoretically be better suited for establish-
ment and further expansion (sensu Blackburn et al., 2011). Similarly,
the round goby has shown great establishment success in several
invaded ecosystems due to favourable environments and several
species-specific traits (Charlebois et al., 2001). The secondary
spread of NIS within a new ecosystem may occur through a com-
bination of natural dispersal and anthropogenic transport mecha-
nisms (Minchin et al., 2009). When water bodies are
interconnected, secondary dispersal of NIS may effectively take
place as active migration and/or movement by water currents (e.g.,
Minchin et al., 2009). Human-induced dispersal mechanisms can
also contribute to their secondary spread. The larvae and early ju-
veniles of the round goby, similar to several demersal fish species,

undergo diel vertical migration and therefore nocturnal ballasting
can result in the transport of larval and young round gobies
(Hensler and Jude, 2007; Hayden and Miner, 2009). Moreover, the
gobiidae are known to lay eggs on hulls or within sea-chests
(Wonham et al., 2000; Jude et al., 1995) and their pelvic fins
reduce maintenance costs while carried within ships' ballast water
(French and Jude, 2001). Such a combination of characteristics may
explain why this group of fishes have been generally more suc-
cessful over other fishes by shipping transport. However, distribu-
tion and spread of NIS may not be fully predictable as each invasion
has a strong stochastic element. Moreover, if the establishment
process of NIS is still in progress, i.e., the species has not yet filled all
of their potential niche space, then relationships between the
environment and species distribution pattern may not emerge.

In the current study wemodelled how external drivers and local
environmental conditions relate to the probability of occurrence of
the round goby. We analysed whether areas where the round goby
has been observed in the Baltic Sea share certain specific abiotic
characters or whether the current distribution of the round goby is
largely uncoupled from its abiotic environment and is primarily
defined by the intensity of propagule pressure i.e. shipping. We
expect that large-scale environmental stresses and disturbances,
such as climatically driven changes in seawater temperature or
wave exposure, can synchronize population changes over wide
geographical areas, as they have a potential to affect recruitment or
mortality of the round goby and its prey. Nevertheless, as the round
goby is territorial with limited swimming range (Ray and Corkum,
2001), we also expect that shipping intensity increases the proba-
bility of occurrence of the species. We also aim to show how and to
what degree the distribution pattern of the round goby is explained
by eutrophication. We expect that eutrophication, one of the key
disturbances in the Baltic Sea, plays an important role in dispersal
of the round goby by increasing nutrient loads and, therefore,
promoting higher invertebrate abundances including the most
preferred food items of the round goby (Kotta et al., 2009; J€arv et al.,
2011), ultimately resulting in an increase in the probability of
occurrence of the fish. Although, the roles of facilitation and inhi-
bition by resident fauna are dominant themes in the invasion
literature (e.g., Elton, 2000; Gurevitch et al., 2011), apart from
eutrophication-induced effects of the prey, we focused our scope to
propagule pressure and abiotic drivers. This is because the round
goby has been ranked among the most aggressive demersal fishes
in the Baltic Sea range and competition and predation by native fish
species only marginally impact the gobies’ densities and their
spread (Marsden et al., 1997; J€arv et al., 2011).

2. Material and methods

2.1. The study area

The Baltic Sea is an example of an environment where biological
invasions are becoming increasingly widespread, posing a serious
threat to biodiversity and ecosystem (Olenin et al., 2007; Zaiko
et al., 2011; Ojaveer and Kotta, 2014). As a typical representative
of a temperate semi-enclosed brackish sea, it has extensive coastal
areas characterized by basin-scale gradients of temperature,
salinity, and oxygen content (Segerstråle, 1957). Ever-increasing
maritime shipping and other invasion vectors maintain the
elevated propagule pressure of non-indigenous species into the
Baltic Sea (HELCOM, 2010). On top of this, a majority of the pro-
jected climate change scenarios suggest extreme shifts in the Baltic
Sea environment (BACC, 2008), which will further destabilize local
environment and create space for novel non-indigenous species.
These conditions, together with spatially variable and relatively low
overall species richness (Ojaveer et al., 2010), broadly define the
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‘invasion environment’ of the Baltic Sea favourable for both new
arrivals as well as secondary spread of already existing non-
indigenous species (NIS).

2.2. Round goby distribution data

As only one country has marine alien species monitoring pro-
gram in place in the Baltic Sea (ICES, 2012), the knowledge of the
current distribution range of the round goby is scattered and
incomplete. In the current study all the existing information on the
round goby in the Baltic Sea basin was systematically reviewed and
recorded as “presence” along with the observation year (from 1990
to 2014) and formatted into a geo-referenced distribution dataset.
Data for round goby observations were obtained from various
sources: literature (e.g. annual reports of the Working Group on
Introductions and Transfers of Marine Organisms of the Interna-
tional Council for the Exploration of the Sea (ICES WGITMO);
Wandzel, 2000; Bacevi�cius, 2003; Corkum et al., 2004; Sapota,
2004; Ojaveer, 2006; Rakauskas et al., 2008; Kornis et al., 2012;
Rakauskas et al., 2013; Azour et al., 2015); public web pages pre-
senting round goby observations (ArtDatabanken, 2014; Finnish
Alien Species Database, 2014; Fischfauna-Online, 2015); authors
own data, originating both from coastal fish monitoring programs
as well as contacts with local professional and recreational fisher-
men (mainly from Estonia, Lithuania and Latvia).

Since coastal fish monitoring efforts and methods vary between
locations, estimating round goby abundances was impossible.
Nevertheless, the gobies' observations covered broad ranges of
environmental gradients and spanned vast areas across the
geographic space (e.g., port and remote areas). A comparison of the
distribution of goby locations to the distribution of background
locations in environmental space showed that these statistical
distributions were similar; thus, sampling bias was not a concern.

Maps presenting round goby invasion in the Baltic Sea were
created using QGIS software (Quantum GIS Development Team,
2014). All round goby observations (n ¼ 333) where used in the
distribution map and in the MaxEnt model (see the modelling
chapter below).

2.3. Supporting environmental data

The round gobies' distribution dataset was supplemented with
the key environmental data potentially impacting the establish-
ment and spread of this invasive fish species (Table 1). All envi-
ronmental variables were continuous. Investigated variables
included the following proxies of propagule pressure: shipping
intensity (Density of ships equipped with Automatic Identification
System, monthly average per pixel of 2200 � 2200 m size;
HELCOM, 2014), amount of annual cargo traffic at a nearest port
(tons; HELCOM, 2014) and distance to nearest port (km). Variables
characterizing the tolerance of round goby to abiotic environment

included vertically aggregated mean seawater temperature (�C),
maximum salinity (psu), stratification (mean difference in water
density between surface and bottom layers i.e. mixing intensity,
kg m�3), exposure to waves (m2 s�1) and depth (m). As a proxy for
eutrophication the surface water, chlorophyll a (chl a, mg m�3) and
water attenuation coefficient (Kd) were used.

Shipping intensity data were obtained from the HELCOM data
service. The raw AIS data were averaged over months and then the
resulting layer was converted into a raster image. Similarly, infor-
mation on ports and associated cargos was extracted from the
HELCOM portal at http://maps.helcom.fi/website/mapservice/
index.html.

The values of water temperature, salinity and stratificationwere
obtained from the hydrodynamical model calculations from April
to August 2005e2012. The calculations were based on the COHE-
RENSmodel, which is a primitive equation ocean circulationmodel.
It was formulated with spherical coordinates on a 10 � 10 min
horizontal grid and 30 vertical sigma layers. The model was forced
with hourly meteorological fields of 2 m air temperature, wind
speed, wind stress vector, cloud cover and relative humidity. The
meteorological fields were obtained from an operational atmo-
spheric model. The model was validated against water level, tem-
perature, salinity and water velocity measurements from the study
area (Bendtsen et al., 2009).

The Simplified Wave Model method was used to calculate the
wave exposure for mean wind conditions represented by the ten
year period between 1 January 1997 and 31 December 2006 (Isaeus,
2004). A nested-grids technique was used to take into account long
distance effects on the local wave exposure regime. The resulting
grids had a resolution of 25 m. In the modelling the shoreline was
divided into suitable calculation areas and fetch and wave exposure
grids were calculated. Subsequently the separate grids were inte-
grated into a seamless description of wave exposure along the
study area. This method results in a pattern where the fetch values
are smoothed out to the sides, and around island and skerries in a
similar way that refraction and diffraction make waves deflect
around islands. The depth raster was obtained from the database of
the Estonian Marine Institute (version 2014).

As a proxy for eutrophication the MERIS satellite derived water
transparency (Kd) and water chlorophyll a (chl a) values were used.
The frequency of satellite observations was generally every second
day over the whole ice-free period (years 2009e2014). However,
several observations were discarded due to cloudiness. The spatial
resolution of satellite data was 300 m. False zeroes, for example
resulting from cloudiness, were removed from the data prior to the
statistical analysis.

2.4. Modelling

In locations where species data have been collected systemati-
cally, for example through biological monitoring, both presence

Table 1
Environmental variables used in the MaxEnt models.

No Variable Unit Function in model Type of data Years of collection Spatial resolution

1 Shipping intensity coefficient Propagule pressure Continuous 2014 2200 m
2 Cargo traffic tons Propagule pressure Continuous 2014 Not relevant
3 Distance to port km Propagule pressure Continuous 2014 Not relevant
4 Mean temperature �C Abiotic environment Continuous 2005e2012 1000 m
5 Maximum salinity psu Abiotic environment Continuous 2005e2013 1000 m
6 Mixing intensity kg m�3 Abiotic environment Continuous 2005e2014 1000 m
7 Exposure to waves m2 s�1 Abiotic environment Continuous 1997e2006 25 m
8 Depth m Abiotic environment Continuous 2014 50 m
9 Chlorophyll ɑ mg m�3 Eutrophication Continuous 2009e2014 300 m
10 Kd coefficient Eutrophication Continuous 2009e2014 300 m
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and absence of species at each site have been recorded. However, in
most locations round goby observations were collected non-
systematically and available as presence-only records and tradi-
tional modelling tools could not be used. In order to maximize the
utility of the database, presence-only species distribution model-
ling was used instead.

In this study the contribution of each environmental variable on
the probability of occurrence of round goby in the Baltic Sea range
was explored using the MaxEnt method. MaxEnt is a machine
learning algorithm for modelling species distributions from
presence-only species records. In brief, MaxEnt seeks what makes
the environment of the occurrence localities of a species different
from the environment in the whole geographical region of interest.
Based on the observed mismatch a species' distribution is defined.
More specifically, MaxEnt model minimizes the relative entropy
between two probability densities (one estimated from the pres-
ence data and one, from the landscape) defined in covariate space.
When doing so the model compares the density of covariates in the
region to the density of covariates occupied by the species and such
comparison informs us what environmental variables are impor-
tant and estimates the relative suitability of one location vs.
another. The null model for the raw distribution is uniform distri-
bution over the landscape, since without any data we would have
no reason to think the species would prefer any location to another.
MaxEnt's predictive performance is consistently competitive with
the highest performingmethods. Since becoming available in 2004,
it has been utilized extensively for finding correlates of species
occurrences, mapping current distributions, and predicting to new
times and places across many ecological, evolutionary, conserva-
tion and biosecurity applications (Elith et al., 2006).

Multicollinearity can be an issue with MaxEnt when answering
if and when environmental variables are of ecological interest.
Thus, prior to modelling, a correlation analysis was conducted for
environmental variables and the final MaxEnt models included
variables that were not significantly correlated with each other (at
p < 0.05). Among the studied environmental variables only the
proxies of propagule pressure correlated (between shipping in-
tensity and distance to nearest harbour r¼�0.29; p < 0.001). Thus,
in order to avoid multicollinearity issue and to assess their use-
fulness in predicting the distribution of round goby, separate
models were run for each of the shipping proxies.

In this study MaxEnt models were fitted as combinations of
basic functions and features. MaxEnt had six feature classes: linear,
product, quadratic, hinge, threshold and categorical. Products were
all possible pairwise combinations of covariates, allowing simple
interactions to be fitted. Threshold features allowed a “step” in the
fitted function; hinge features were similar except they allowed a
change in gradient of the response. Many threshold or hinge fea-
tures were fitted for one covariate, giving a potentially complex
function.

Segment-based (non-gridded) data were modelled using SWD
(samples-with-data) format in MaxEnt for both presence and
background sites (i.e., the whole Baltic Sea). A 10-fold cross-
validation was used to obtain out-of-sample estimates of predic-
tive performance and estimates of uncertainty around fitted func-
tions. In order to reduce model overfitting, a balance between
accurate prediction (model fit) and generality (model complexity)
was sought by maximizing the penalized maximum likelihood
function, i.e., the gain function. When doing so, regularization or
the LASSO penalty was applied by exploring a range of regulari-
zation parameter values and choosing a value that maximizes
measures of fit on a cross-validation data set. The LASSO penalty is
based on the rationale that features with larger variance should
incur a larger penalty and, thus be less likely to be included in the
model (Hastie et al., 2009). For model validation a random selection

of 25% of the overall localities of round gobies were used. The
percent contributions of individual variables to the final model
were identified with jackknife tests. The jackknife test evaluates
how each variable contributes to the “gain” of the MaxEnt's model
(i.e., improvement in penalized average log likelihood compared to
null model) (Elith et al., 2011). A variety of error measures can be
calculated when comparing modelled and observational data. In
particular, the use of threshold-independent receiver operating
characteristic (ROC) plots has received considerable attention. A
ROC plot is obtained by plotting all true positive fraction (i.e.
correctly classified values) on the y-axis against their equivalent
false positive fraction for all available thresholds on the x-axis. The
area under the ROC function (AUC) is usually taken to be an
important index because it provides a single measure of overall
accuracy that is not dependent upon a particular threshold. The
value of the AUC is between 0.5 and 1.0 with AUC ¼ 1.0 indicating
that the model has a perfect match and AUC ¼ 0.5 indicating that
model is no better than random (Fielding and Bell, 1997).

3. Results

The current range of round goby observations in the Baltic Sea is
extensive (Fig.1). Since the first observation in 1990, the species has
been detected in all major sub-basins. It appears that during the
first decade of invasion, the distribution area was mostly confined
to the Gulf of Gdansk area, while further spread to the south-
western Baltic was observed during the first half of the 2000s. The
most recent observations appear in the northern regions (Northern
Baltic Proper, the Gulf of Bothnia and the Gulf of Finland) and on the
eastern and western coasts of southern Sweden. Currently the
northernmost observations are from Bothnian Bay (Raahe, Finland
in 2012).

MaxEnt models explained a majority of the round goby distri-
bution, inferring that selected variables were largely responsible for
observed pattern in species presence. The cross-validated AUC for
the model was estimated at 0.978 indicating that the model has
almost a perfect match. However, the AUC plot for MaxEnt involves
the fraction of the total study area predicted present instead of the
more standard omission rate, i.e., the fraction of absences predicted
present. Thus, the presented AUC value is not directly comparable
to a standard ROC/AUC approaches involving specificity and
sensitivity.

Themodel suggested that both local hydrography and propagule
pressure (measured as shipping activity) largely determine the
distribution of the round goby in the Baltic Sea. It appeared that the
round goby has an affinity towards locations characterized by low
exposure to waves, low salinity, high temperature and high vertical
mixing of the water column. In addition, reduced distance to a
nearest port and elevated amount of cargo traffic at the port
increased the probability of the round goby occurring at a location
(Figs. 2 and 3). Although all proxies of propagule pressure
contributed to the MaxEnt models, distance to nearest port had the
highest predictive power (Table 2). When cargo traffic or shipping
intensity was used as a proxy for propagule pressure, exposure to
waves was even more important in the MaxEnt models.

Jackknife test showed that exposure to waves contributed over
60% of the model variability i.e., this variable contained information
to the largest extent that was not present in other variables. Dis-
tance to a nearest port explained 17.6% of model variability,
whereas other variables contributed only marginally to the model.
Interestingly, eutrophication-related variables such as water chlo-
rophyll a level and water transparency as well as water depth did
not significantly change the probability of occurrence of the round
goby and had only minimal impacts to the final model (contribu-
tion below 1.4%). Removal of exposure to waves significantly
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reduced the overall predictive performance of models and
increased the contribution of depth in theMaxEntmodels (Table 2),
demonstrating that coastal topography and wave climate play a
major role in driving the current distribution of the round goby.

4. Discussion

Since the range of an invasive species is an important predictor
of their large scale impacts (Parker et al., 1999) and the best pre-
dictor of range size is time after invasion (Byers et al., 2015), one of
the most urgent challenges in bioinvasion science is to accurately
predict distribution and potential spread of NIS in order to inform
stakeholders on invasion risks and suggest management actions.
However, as each invasion has a strong stochastic element and NIS
may spread far beyond their native niches (Parravicini et al., 2015),
development of such predictive models is still hampered by our
limited knowledge on the relative contribution of mechanisms
behind each bioinvasion, and the roles of the environment modu-
lating species establishment and their further spread (Roura-
Pascual et al., 2011). When NIS has already established in the
recipient ecosystem, we can learn greatly from the spe-
cieseenvironment relationships and estimate to what extent the
invasion success is related to the intensity of propagule pressure
and/or species tolerance to specific set of local abiotic characters.

TheMaxEntmodels used in this study performed verywell (AUC
between 0.978 and 0.980) indicating a significant role of the
selected environmental variables to the spatial distribution of the
round goby. As the environmental proxies were carefully selected
from the literature, the final models describe the best physiological
requirements, potential niche space and ecology of the species.
Importantly, the model demonstrated that only a handful of

environmental drivers are needed to accurately predict the occur-
rences of the round goby. This suggests that there are very few
factors influencing the round goby dispersal in the Baltic Sea.

Among natural drivers, exposure to waves was by far the most
important variable defining the environmental envelope of the
round goby, low exposure sites being characterized by higher
probability of occurrence of the species. This result suggests an
affinity of the round goby to sheltered and moderately exposed
areas. Round goby is an extremely sedentary species (Ray and
Corkum, 2001) and highly exposed areas with a narrow macro-
algal belt lacking habitat stability, provide only a limited amount of
suitable habitat for the species. In such habitats food is not limiting,
as exposed reefs of the Baltic Sea are often covered by a dense
population of bivalves (Kotta et al., 2013) indicating a tradeoff be-
tween suitable habitat and availability of preferred prey.

As aquatic pollution may increase the relative success of inva-
sive species (Crooks et al., 2010) and, specifically, the round goby
has been found to be tolerant to contamination (McCallum et al.,
2014), our results indicate that preference of coastal areas by the
species might be simply related to the fact that coastal areas are
under higher anthropogenic impact than offshore areas. Also, it
should be mentioned that our data mostly originate from fishers in
the period of spawning and feeding time, when the species is
present in the coastal areas. In the cold season, the fish has also
been observed in deep offshore areas both in its native and invaded
areas (Kostyuchenko, 1969; Walsh et al., 2007). The observed
exposureeoccurrence relationship may also apply elsewhere, as to
date the round goby has also failed to establish in the exposed areas
of the Great Lakes (Grigorovich et al., 2003b; Daniel Heath, Personal
Communication).

In the current study, the probability of round goby occurrence

Fig. 1. Observations of the round goby in the Baltic Sea.
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Fig. 2. Dependence plots showing how each environmental variable separately affects the MaxEnt prediction i.e. each of the following curves represents a different model using
only the corresponding variable. The separate contribution of each variable is shown in each graph (%). The y-axes indicate logistic output.
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was significantly higher in close proximity to ports characterized by
elevated cargo amounts. This clearly links patterns of the round
goby distribution to the cargo traffic and is in line with evidence
from elsewhere suggesting that the human factor (national wealth
and human population density) is a significant predictor in the
majority of models when analysed jointly with climate, geography
and land cover (Py�sek et al., 2010). When cargo tonnage or shipping
intensity was used as a proxy for propagule pressure, exposure to
waves gained importance in the MaxEnt models. This may indicate
that proximity to ports was the best proxy for describing propagule
pressure.

The North American Great Lakes also host very dense pop-
ulations of the round goby. Since its apparent arrival via ballast
water in 1990 (Jude et al., 1992) the species is widely distributed
across all of the five lakes and is spreading rapidly into adjacent
tributaries (Jude, 2001; Kornis and Vander Zanden, 2010). Sub-
stantial genetic variation, multiple founding sources, large numbers
of propagules, and a unique population structure is likely behind
this ecological success story (Brown and Stepien, 2009).

Recent genetic analyses demonstrated that a combination of
short-distance diffusion and long-distance dispersal contributes to
the current distribution of the round goby in the lakes and rivers of
its introduced North American ranges (Bronnenhuber et al., 2011).
This evidence also suggests that commercial shipping potentially
promotes frequent long distance spread of the round goby in these
habitats (LaRue et al., 2011). Although different in methodologies,
the North American studies and our paper have independently
come to a similar conclusion, and jointly suggest that the spread of
the round goby can largely benefit from shipping.

There are several examples outside of the Baltic Sea to suggest
that shipping is a likely pathway for the invasion of gobies. In their
review, Wonham et al. (2000) concluded that gobies (family
Gobiidae) were the most commonly found fish in ballast tanks and
they also dominate among fishes introduced via ballast water.
There are several reasons why gobies have been more successful
over other fishes by shipping transport. Specifically, gobies are
known to be resilient enough to survive ocean crossings in ballast
tanks (e.g., Carlton, 1985, 1987) owing to the existence of a speci-
alised lateral-line system (Jude, 1997) and tolerance of a wide range
of habitat conditions (Kornis et al., 2012). The crevicolous nature of
gobies when seeking refuge and laying eggs may predispose them
to ballast-water transport, particularly due to the ballast-intake
grates (Hoese, 1973; Carlton, 1985). Gobies may also lay eggs in
small holes and thereby use ship hulls as a transport vector
(Wonham et al., 2000). The recent cases of ships' ballast water
transfers (as larvae or juveniles) include the introduction of the
Australian bridled goby, Arenigobius bifrenatus to New Zealand
(Willis et al., 1999) and the streaked goby Acentrogobius pflaumii
into southwestern Australia (Maddern and Morrison, 2009).

Earlier theoretical models have shown that relationship be-
tween species release and establishment can potentially have only
two shapes: hyperbolic or sigmoid (Wonham, 2008). MaxEnt
models in this study demonstrated a sigmoid curve between the
amount of cargo and the probability of occurrence of the round
goby. This implies a clear Allee effect, i.e., invading goby individuals
interact positively creating an accelerating phase of a sigmoid curve
(Allee, 1931). Previous studies have demonstrated either absence or
presence of riskerelease relationships (e.g., Grigorovich et al.,
2003a; Ricciardi, 2006; Costello et al., 2007). Such discrepancies
may simply suggest that for some ecosystems or species, post-
release processes have an overwhelming role over propagule
pressure, whereas, for other ecosystems or species, propagule
pressure is primarily limiting the spread of non-indigenous species.
Alternatively, the selected proxies of propagule pressure may
mismatch the measured species occurrences in space, time, or

Fig. 3. Results of the jackknife test of variable importance in the MaxEnt models. In
these tests test gain was used. In this analysis the environmental variable that de-
creases the gain the most when it is omitted has the most information that is not
present in the other variables.

Table 2
Results of MaxEnt models run separately for each three shipping proxies: distance to
port, total cargo and shipping intensity. Separate models were run to avoid multi-
collinearity issue in theMaxEntmodels as shipping intensity and distance to nearest
harbour were weakly intercorrelated (r ¼ �0.29; p< 0.001). Models' descriptive
power and percent contributions of each variable to the relevant MaxEnt models are
shown. The AUC is a measure of overall model accuracy with the values above 0.9
suggesting almost a perfect match of all three models. Unregulized test gain is a
measure of goodness of fit of models. It represents the presence likelihood of
training records in comparison with background records. Gain is not regularized/
compensated for the number of terms in the model.

Model descriptive power/variable 1 2 3

Test data AUC 0.980 0.978 0.978
Unregulized test gain 3.525 3.513 3.511
Distance to port 17.6
Total cargo 9.9
Shipping intensity 4.3
Exposure to waves 61.9 67.7 68.8
Salinity maximum 8.4 8.4 10
Temperature mean 6.1 7.8 8.8
Mixing intensity 4.1 4.3 5.5
Depth 0.4 0.6 0.6
Kd 1.3 0.8 1.4
Chlorophyll ɑ 0.3 0.6 0.8
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taxonomic resolution (Wonham, 2008). However, the MaxEnt
models in this study suggested that both distance to ports and net
mass of cargo are good proxies of propagule supply of the round
goby and therefore can be used in a scientifically based manage-
ment tools also when modelling other shipping related NIS
distributions.

Temperature and salinity regime contributed only marginally to
the model variance implying that the round goby has low sensi-
tivity to environmental extremes, potentially due to either large
variation in between-individual environmental optima and/or
broad within-individual plasticity (Roughgarden, 1972; Abedikova,
1980; Kornis et al., 2013). Similarly, elevated chlorophyll a level,
used as a proxy of eutrophication measure, did not yield to higher
probability of occurrence of the round goby. It is likely that at the
initial stage of invasion, food is not limiting the spread of this
invasive fish. In general, clams and mussels constitute the majority
of benthic biomass in the coastal areas of the Baltic Sea and due to a
very low natural richness of epibenthic predators this food source is
in excess for novel invasive species, such as the round goby (Kotta
et al., 2008). Moreover, the diet of round gobies is not limited to
bivalve prey. In areas where bivalves are less abundant, gobies
easily consume other available prey species such as barnacles,
gastropods, and chironomids (Riikka Puntila, Unpublished Data).
Similar results have been observed in other areas for similar spe-
cies, such as the shimofuri goby Tridentiger bifasciatus, who
appeared to be a generalist predator in the invaded San Francisco
Estuary by consuming seasonally most abundant benthic inverte-
brate prey (Matern and Brown, 2005).

Management of marine NIS should be primarily focussed on
managing invasion vectors and pathways, as eradication of the
already invaded NIS has been proven mostly impossible in the
marine environment (Ojaveer et al., 2014; Lehtiniemi et al., 2015
and references therein). Amongst invasive fish, information of
their transport and release are the least investigated aspects and
therefore research on the transport and dispersal should be prior-
itized (García-Berthou, 2007). Our results indicate, that the com-
bination of long-distance dispersal (evidenced as shipping as a
significant factor in the MaxEnt models) and short-distance spread
from the shipping hotspots explain the current pattern of round
goby observations in the Baltic Sea. The round goby is classically
considered as a demersal fish throughout its life cycle. However,
recent evidence suggest that this might not be completely true, as
diurnal vertical migration of both fish larvae and early juveniles
was observed occurring in the pelagic zone during the night
(Hayden and Miner, 2009; Hensler and Jude, 2007). This is impor-
tant especially from management perspective: if ships were bal-
lasting their tanks near the surface only during daylight, it may
have reduced further spread of the fish in the Baltic Sea and
elsewhere.

The round goby has high potential for secondary spread. In the
Great Lakes the round goby was initially expected to remain within
rocky habitats but in just 5 years after the first appearance, the
invasive fish colonized all the lakes, with the exception of a large
part of Lake Superior (U.S. Geological Survey, 2015), and is currently
expanding its distribution upstream in adjacent rivers
(Bronnenhuber et al., 2011). The range expansion has been much
slower in the Baltic Sea where a pan-Baltic spread was reached in
about two decades. The round goby has invaded the Baltic Sea
probably already in late 1980's, but only very recently significantly
expanded its range in several localities, mostly to port and harbour
areas. To date, there are still several ecologically suitable areas
which have remained uncolonized (e.g., west coast of the Baltic Sea)
or where the abundance remains relatively low. Such slow coloni-
zation could be attributed either to a broad range of environmental
conditions of the Baltic Sea or a low genetic diversity of the round

goby, described from haplotype analysis (Grigorovich et al., 2003a).
Puck Bay in the south-eastern Baltic Sea was suggested to be the
primary invasion site in the Baltic Sea (Bj€orklund and Almqvist,
2010). However, due to our limited knowledge it cannot be
concluded whether there has been only one primary invasion or
multiple invasions from different source populations as has taken
place in the Great Lakes (Brown and Stepien, 2009; Bj€orklund and
Almqvist, 2010). Nevertheless, temperate high-productivity
brackish water seems to be a very favourable habitat for the
round goby as the species exhibits longer lifespan and larger indi-
vidual sizes in the Baltic Sea compared to their native distribution
area (Sokołowska and Fey, 2011). Only the northernmost areas of
the Baltic Sea, like Bothnian Bay, might likely pose difficulties for
the round goby due to too extreme thermal conditions. However,
our MaxEnt models did not indicate this restriction (see also Fig. 1).

In conclusion, the models used in this study provide valuable
insights to roles of different environmental variables determining
the round goby's distribution in the Baltic Sea. Potentially the
models can be applied to predict future distribution trends of this
species if used with caution. The models demonstrate clearly that
the spatial distribution of the round goby in the Baltic Sea is a
function of shipping intensity (distance to port, cargo traffic) and
abiotic hydroclimatic environment (wave exposure). Although high
frequency of release does not necessarily lead to successful in-
vasions, the round goby seems not to have major environmental
constraints in the Baltic Sea. This points to an obvious need for
effective management measures of the Baltic shipping, including
performing relevant risk assessments in intra-Baltic shipping (e.g.,
David et al., 2013).
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APPENDIX V 

Salinity tolerance of round goby 

Jane W. Behrens (DTU Aqua, P2))  

Behrens JW, van Deurs M, Christensen AF. Aerobic scope and blood plasma osmolality 

predict secondary dispersal potential of an invasive fish. Submitted  

Introduction 

Non-indigenous species (NIS) can have strong impacts on marine biodiversity and ecosystem 

structure and function. Hence, predicting secondary dispersal patterns is pivotal. Once introduced 

into a new region, secondary dispersal of NIS depends on a suite of ecological factors such as 

presence of predators, competitors, and parasites, yet with the most fundamental constraints on 

the distribution arising from the organism’s physiological limitations in relation to the ambient 

environment. Predicting dispersal however remains a challenge. In fish, aerobic scope (AS, the 

difference between maximum and standard metabolic rate) has been linked to fitness parameters 

such as growth, dominance, feeding, and swimming performance. However, little is known about 

the link between AS and the dispersal potential of invasive species in novel environments.  

The round goby Neogobius melanostomus (Pallas, 1814) is one of the most wide-ranging invasive 

fish species in Europe and North America, thriving in both brackish and fresh water. It has however 

hitherto remained unclear if it will endure high saline conditions. Nevertheless, the species is 

currently spreading at 30 km year-1 into a steep salinity gradient segregating the brackish Baltic 

Sea from the oceanic North Sea. To evaluate the potential for secondary dispersal into more saline 

water bodies, we examined AS and blood plasma osmolality in relation to salinities of 0, 10, 15, 25 

and 30 PSU.  

Results 

The combined effects of salinity on SMR and MMR resulted in the highest AS at 10 PSU and 

lowest at 30 PSU (reduced by 31% as compared to optimal conditions). There was a negative 

relationship between AS and osmotic potential ([ambient osmolality-blood plasma osmolality]) and 

a positive relationship between AS and survival. Blood plasma osmolality was not affected by 

ambient salinities from 0 to 25 PSU; only at 30 PSU could a negative effect be detected. Overall, 

there was pronounced inter-individual variation, especially at the higher salinities and some 

individuals were able to completely offset the negative impact of high salinity on their performance.  
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Conclusions and future perspectives 

These results suggests that round goby has the capacity to occupy full oceanic environments and 

we predict that the species will continue to spread into the Baltic Sea-North sea transition zone, 

although the depressed physiological performance at high salinities might reduce its competitive 

potential as it approaches the North Sea.  However, a pronounced high inter-individual variation in 

physiological performance at the highest salinities suggests that some individuals are able to offset 

the negative effects of high salinity, thus increasing the dispersal potential at the invasion front.  

Using AS as a tool to make early predictions of dispersal potential and future ‘area of impact’ is a 

great asset in relation to taking appropriate management actions.  
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       Appendix VI 

Salinity and temperature effects on egg development in round goby - Hand line survey in 

the Western Baltic 

Jan Niemax, Axel Temming, Jens Peter Herrmann, Sven Matern (University of Hamburg, P3)  

 

Introduction 

Since 1990 round goby Neogobius melanostomus has managed to successfully establish within 

most parts of the Baltic Sea. Within the first 15 years of invasion the dispersal was limited to 

areas with brackish waters. In the past decade the spreading exploded and included more and 

more areas with higher salinities (compare map in Kotta, Nurkse, Puntila, & Ojaveer, 2015, 

Appendix IV). However, the physiological limits, especially in relation to reproduction, are not 

well understood. As a first step to estimate the potential spreading of round goby in saltier 

waters of the Western Baltic and the Kattegat, experiments were performed to test egg 

development and hatching success in different combinations of salinity and temperature. The 

aim is to test to what extent combinations of salinity and temperature act as a barrier to further 

spreading of the round goby into the Belt areas and the Kattegat.  

Methods  

Round gobies Neogobius melanostomus were caught in Oktober 2014 by angling in the 

Travemünde Bight. The gobies were maintained in tanks with an artificial seawater circulation 

system. Salinity was adjusted to 16 psu, temperature was about 15 °C and light was set to 14 

hours daylight. To initiate spawning, the gobies were exposed to an artificial seasonal cycle by 

variation of day length and light intensity as well as temperature. Temperature was reduced 

down to 8 °C and day length to 8 hours with a light intensity of 60% within 16 days. These 

conditions were maintained for 47 days, afterwards day length and temperature increased again 

for 17 days until reaching summer conditions of 16 hours daylight at 100% and 16°C. 

For mating the fish were split up into groups of 3 females and one male to prevent territorial 

fights of males for shelters. Each tank was equipped with a shelter. The shelters were 

constructed with exchangeable glas ceilings. Thus removing of clutches was possible without 

opening the shelters. Shelters were checked daily for new clutches. If spawning occured, the 

glas ceiling was removed and placed in a tank with predefined salinity and temperature 

conditions (see Tab. 1). For each combination at least 3 replicates were performed. The clutches 

were photographed on Monday, Wednesday and Friday. The 20°C eggs were photographed 

every day. Subsequently the eggs were counted based on the pictures and categorized into 4 

stages, good, bad, blackeye, hatched. 

1) ”Good” refers to egg in good condition, but without black eyes of a larvae visible. 2) ”Bad” 

means the egg is in a bad condition characterized by a dissolving yolk within the egg and a 

blurry appearance, a development is not expected. 3)”Blackeye” is characterized by little black 

spots visible inside the egg, which during the development are recognizable as part if the 

developing eyes.  
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4) ”Hatched” was assumed if an egg had a blackeye stage before and only the hull was left. 

 

Results 

Note: Results have to be considered as preliminary as further analyses are ongoing.   

Development time until the blackeye stage 

The developing time from fertilization up to the first appearance of the blackeye stage decreases 

with temperature and increases with salinity. The fastest development up to blackeye stage 

occurred at 20°C and 5 psu within 4 days. An elongated time was measured at 10°C and 20 

psu, with up to 30 days (Tab. 1).  

Table 1. Time (days) from fertilization up to the first appearance of  the blackeye stage in relation of 

salinity and temperature 

 

 

 

 

 

 

 

Hatching success  

We found that round goby was able to develop successfully until hatching within a wide 

temperature and salinity range. Successful hatching occurred in all combinations of 10,15,20 °C 

with salinities of 5,10,15 and 20 psu, with one exception. At a temperature of 10°C and a salinity 

of 20 psu hatching did not take place (Tab. 2). The mortality of eggs through the different 

treatments is highly variable. In general the lowest mortality rates or vice versa the highest 

hatching success was observed at 15°C. With increasing or decreasing temperature from 15°C 

the success was reduced. Higher salinities always led to higher mortality rates ( see Fig. 1+2). In 

5 treatments we located one replicate that performed noteworthyly better than the rest. 

   

 

 

 

Mean time in days till black eye stage 

sal | Temp 5°C 10°C 15°C 20°C 

5 unsuccessful 22 9 4 

10 unsuccessful 24 9 5 

15 not tested 22 10 5 

20 not tested 30 10 6 
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Table 2. Hatching success (at least one larvae hatched successfully) dependent on salinity and 

temperature 

Hatching 

sal | Temp 5°C 10°C 15°C 20°C 

5 unsuccessful successful successful successful 

10 unsuccessful successful successful successful 

15 not tested successful successful successful 

20 not tested unsuccessful successful successful 

 

Here the results of two treatments (5 + 20 psu, 15°C) are shown as an example (Fig.1 + 2). 

It appeared that at 5 psu first hatching was observed 23-27 days past spawning and finished 

nearly simultaneously in all replicates after 33-34 days while most eggs actually hatched around 

day 32. The overall hatching success varied marginally between clutches. Hatching at 20 psu 

also started around day 23-37, but needed slightly more time until all eggs were hatched. The 

time varied within the replicates from 35 – 43 days after spawning. The data of this trial revealed 

that the time to hatch is relatively constant across all replicates. Similar patterns were found in 

the other treatments. 

 

The major influence of salinity became apparent by a closer look at the survival of eggs. 

Whereas at 5 psu the mortality is about 6% or less it ranges from 57% up to 71% at 20 psu. 

 

 



51 
 

 

 

Fig.1: Hatching time and success at 5psu and 15°C. Shown are the numbers of eggs at each stage over 

time in days after spawning for 3 replicates. 
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Fig.2: : Hatching time and success at 20 psu and 15°C. Shown is the numbers of eggs at each stage over 

time in days after spawning for 3 replicates. 

Conclusions and future perspectives 

The results show that round goby Neogobius melanostomus is able to cope with a wide range of 

salinities. Nevertheless higher salinities have a strong impact on the amount of successfully 

hatched larvae. The high variability between replicates within 5 treatments indicates that a 

pronounced maternal effect on hatching success exists. (A cross-breeding experiment 

investigating effects of possible adaptation to certain environments is planned for summer 2016 

by the University of Gothenburg in cooperation with University of Hamburg.) 

Considering these results, the endpoint of round goby dispersal is probably not reached, 

although it will maybe progress slower caused by a reduced reproduction success. The areas in 

which round goby find suitable conditions for a successful breeding are obviously substantially 

wider than their current expansion. Recent investigation by Jane Behrens show that adult round 

goby are able to resist high salinities up to nearly oceanic environments (see results of P2 (DTU 

Aqua) in Appendix V) These findings indicate that expanding the reproduction experiments up to 

30 psu is advisable. Furthermore, experiments are in preparation that simulate ship-based travel 

of eggs, assuming that round goby uses a ship hull to spawn. Eggs are going to be exposed to 
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oceanic salinities for about 1 week and then moved to brackish conditions, similar to a harbor in 

a river mouth. The results probably explain a vector of round goby dispersal 

 

Hand line survey in the Western Baltic 

Introduction 

The spreading of round goby along the Western part of the German Baltic coast has not been 

investigated before. The salinity in this region varies from around 20 psu in the Flensborg Fjord 

mouth down to roughly 13 psu in the Trave estuary. A hand line survey for round goby was 

conducted along the Baltic coast from Lübeck to Flensburg.  

Methods  

The angling took place at eleven different locations along the coastline of the Western BalticSea 

in Schleswig Holstein, Germany. Sampling occurred between 11-Aug 2014 and the 2-Oct 2014. 

Most sampling sites were located in or close to sport boat harbours and all sampling sites were 

characterized by anthropogenic structures like quay walls and pontoons.  
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Fig. 3: Map of the sampling sites and the sampling areas, which were defined by the distribution of 

Neogobius melanostomus and Gobius niger at the different sampling sites (map modified from 

www.esys.de). 
 

Results 

A distribution boundary of round goby was found in the area of Kiel Bight. Further was a co-

occurrence of the black goby (Gobius niger) found in areas with moderate round goby 

abundances (sampling area B, Fig. 3). Black goby was absent at the location with the highest 

densities of round goby (Neogobius melanostomus) in Travemünde (sampling area A, Fig. 3). 

North of the Kiel Fjord (sampling area C, Fig. 3) only black gobies were caught, with highest 

CPUE in the Flensburg Fjord (Tab. 3.2).  Highest salinity was measured at the sampling site 

Eckernförde with 18 psu (Tab 3.2). Lowest salinities occurred at the sampling site of 

Travemünde with 13.8 psu (Tab 3.1). The salinity at the sampling site in Flensborg was about 

14.8 psu. The sex ratio was 45.2 % male in Kiel and 61.4 % male in Travemünde. Thus the ratio 

of females is higher at the invasion front.  

Conclusions and future perspectives 

The hand line survey demonstrated the present occurrance of round goby at the Baltic coastline 

of Schleswig Holstein. This revealed that the actual position of the invasion front can be found in 

the area of Kiel Bight. Nevertheless that salinity in Flensborg was in a range similar to those in 

sampling area B (Fig.3) but no round gobies were caught. One explanation might be that the 

higher salinity in the Eckernförde bight acts as barrier. Furthermore there is much less ship 

traffic reaching the Flensborg bight (Fig. 4). In a recent study dispersal of round goby was found 

to be closely linked to shipping intensity (Kotta et al., 2015) see Appendix IV. However the 

expansion of colonised area by round goby across the status quo is likely. As mentionted above 

aduld gobies are able to resist considerably higher salinities than measured in Eckernförde. 

According to our results round and black goby do not compete for food. Black goby condition is 

also not significant different in areas with presence or absence of round goby (unpublished Data, 

S. Matern, University Hamburg). Therefore the absence of Black goby in Travemünde is likely 

caused by habitat competition, e.g. suitable spawning substrates. Aggressive behaviour was 

already identified to be the main factor explaining competition in the Greate  Lakes (Bergstrom & 

Mensinger, 2009). Potentially, these aggressive behavior enables round goby to outcompete 

black goby in the Western Baltic. A strong impact on resident juvenile flounder and turbot was 

recently reported (Ustups et al., 2016)  Although males are more active swimmers and show 

more exploratory behavior (Marentette et al., 2011) more females were found in relation to 

males at the “invasion front” than at the “older” population. This result is confirmed by a study 

from the Danube River (Brandner, Cerwenka, Schliewen, & Geist, 2013). Thus the continuation 

of the hand line survey at the German Baltic coastline to investigate the further dispersal of 

round goby and its effects on black goby is planned for 2017. 

 

  

http://www.esys.de/
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Tab. 3.1: General information on the catch composition: Goby ratio = percentage of round goby of total gobiid catch. 
 

 

  

Sampling site TM NS GB HH LA LA SM TK 

Sampling area A    B    

Sampling date 15-Sep-

2014 
16-Sep-2014 4-Sep-2014 5-Sep-

2014 
13-Aug-2014 2-Sep-

2014 
17-Sep-

2014 
11-Aug-

2014 Fishing time [h] 6 6 6 6 6 - 2 6 

Number of Angler 4 4 4 4 4 2 2 4 

Salinity [PSU] 13.8 15.7 16.6 14.4 15.8 - 17.2 14.6 

Surface water temperature [°C] 17.9 17.5 - 17.6 23.0 - 17.0 22.1 

Number of Gobies 347 114 29 107 139 17 47 92 

Neogobius melanostomus 347 14 5 51 3 1 17 3 

Gobius niger 0 100 24 56 136 16 30 89 

Goby ratio 1.00 0.12 0.17 0.48 0.02 0.06 0.36 0.03 

CPUE N. melanostomus 14.50 0.58 0.21 2.13 0.13 - 4.25 0.13 

CPUE G. niger 0.00 4.17 1.00 2.33 5.67 - 7.50 3.71 

Bycatch         

CPUE bycatch 0.13 0.17 0.17 0.67 0.17 - 0 0.42 

Pomatoschistus 

sp. Perca 

fluviatilis 

 
2 

  
4 

 
15 

    

Gasterosteus 

aculeatus 

Ctenolabrus 

rupestis 

1 2   
1 

 
3 

   
9 

Belone belone 

Zoarces 

viviparus 

Myoxocephalus scorpius 

 2    
1 

   

 

1 
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Tab. 3.2: General information on the catch composition: Goby ratio = percentage of round goby of total gobiid catch. 
 

Sampling site TK  TK EF EF KA GE GE FB FB 

Sampling area  B     C    

Sampling date 2-Sep-

2014 
 17-Sep-

2014 
14-Aug-2014 11-Sep-2014 2-Oct-2014 12-Aug-2014 11-Sep-

2014 
15-Aug-2014 11-Sep-

2014 Fishing time [h] -  2 6 - 2.5 6 - 6 - 

Number of Angler 2  2 4 2 3 4 2 4 2 

Salinity [PSU] -  12.9 18 - - 15 - 14.8 - 

Surface water temperature [°C] -  17.0 17.5 - 17.4 23.3 - 19.9 - 

Number of Gobies 24  24 98 22 34 155 20 364 20 

Neogobius melanostomus 4  7 0 0 0 0 0 0 0 

Gobius niger 20  20 98 20 32 155 20 364 20 

Goby ratio 0.17  0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CPUE N. melanostomus -  1.75 0.00 - - 0.00 - 0.00 - 

CPUE G. niger -  5.00 4.08 - - 6.46 - 15.17 - 

Bycatch           

CPUE bycatch -  3.00 0.25 - 0.40 0.13 - 0 - 

Pomatoschistus sp.    2 2 2     

Perca fluviatilis    4   1    

Gasterosteus 

aculeatus 

Ctenolabrus 

rupestis 

   
12 

       

Belone belone       2    

Zoarces viviparus 

Myoxocephalus scorpius 

      
1 

    

 

Abbreviations: 

EF: Eckernförde | FB: Flensburg | GB: Großenbrode | GE: Gelting | HH: Heiligenhafen | KA:|Kappeln | Kiel SM: Kiel / 

Schwentinemündung | Kiel TK: Kiel / Tiessenkai | LA: Laboe | NS: Neustadt in Holstein | SM: Kiel / Schwentinemündung |TK : Kiel / 

Tiessenkai | TM: Travemünde 
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Fig. 4: AIS based vessel density per km² in year 2014 (https://www.geoseaportal.de/gdi-bsh-

portal/ui) 
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 Appendix  VIIa 

 

Temperature and size-dependent functional response of sprat, Sprattus sprattus L.  

 

R. Kulke; J-P. Herrmann, S. Kolodzey, L. Meskendahl, A. Temming (University of Hamburg, 

P3) 

 

Growth and recruitment success of sprat depends strongly on water temperature and food 

availability (Peck et al. 2013). Despite the great economic and ecological significance of 

sprat, relationships between feeding rates and temperature were not investigated before. 

The present results serve as basis for estimations on food densities required for optimal 

growth and good recruitment success.  

 

MATERIAL AND METHODS 

 

Capture and maintenance of experimental fish 

Young-of-the-year sprat were caught in September 2013 and 2014 in the Harbour of 

Wendtorf (Baltic Sea, 54°41’N; 8°36’8E) with a hand-operated dip-net (area: 4m2; mesh size 

6mm) and then transported in a 700-1000L box with aerated sea water to the aquarium 

facilities of the Institute of Hydrobiology and Fishery Science at the University of Hamburg. 

Prior to experiments, sprat were maintained in groups of 1000-2000 individuals in circular 

tanks (1,000L). Tanks were supplied with continuous flow of mechanically and biologically 

filtered, artificial sea water (Aqua medic) from the recirculation system. Before the 

experiments, sprat were slowly acclimated to laboratory conditions (Temperature = 12.0 ± 

0.1 °C; Salinity = 16 PSU). Fish were maintained under a 13 L:11 D light regime and were 

fed an artificial pellet diet (Marico advance 0.5-0.8 mm, Coppens International bv) and live 

Artemia salina nauplii (SEPArt-Cysts, INVE Aquaculture).  

 

Prey type 

Non-evasive Artemia salina nauplii (771 ± 90 µm total length; N = 316; 0.0016 ± 0.0004 mg 

dry weight; N = 181) with low escape responses were used to determine the maximum 

feeding rate of sprat at different water temperatures and fish sizes. A detailed description of 

the rearing conditions for A. salina can be found in Brachvogel et al. 2013.  

 

Experimental Tank 

 

The experimental tank was separated into two parts, the fish chamber (square-shaped, 

486L) where the sprat were kept and the collecting chamber (324L) where all prey items lost 

through the water over-flow (2.8 Lmin-1) were collected (Figure 1). Feeding behaviour of sprat 

during experiments was recorded by an underwater camera (GoPro Hero3). The fish and 

collecting chambers were connected by a gentle circular water flow supplied with filtered (20 

µm pore diameter) water from the recirculation system. An aerated S-shaped PVC-panel in 

the fish chamber caused a gentle vertical circular water flow within this chamber and 

promoted a homogeneous distribution of prey items. Prey items lost via the over-flow were 

collected every 10 min (time intervals = 0–10, 10–20, 20–30, etc.) in a 100-µm mesh-

bottomed cup. To determine the actual prey concentration in the fish chamber all collected 

prey items from every time intervals were counted under a binocular microscope.  
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Experimental set-up 

 

A set of experimental tanks was constructed to perform simultaneous experiments with 

similar sized sprat. Prior to the experiment fish were not fed for 24 hours. At the start of an 

experiment, a certain amount of prey was added to the experimental tank (fish chamber) to 

achieve an initial target prey concentration of 100-300 L-1. During an experiment the prey 

concentration decreased exponentially due to feeding activity and the water overflow of the 

fish chamber. Experiments lasted until no feeding fish were observed on the screen (duration 

of experiment between 1.5-3 hours). After each experiment sprat were removed and killed 

rapidly by an overdose of anaesthetic (MS222). For every single fish, the biometric data was 

obtained and the stomach content was analysed in order to determine the percent of feeding 

fish. 

 
Figure 1: Diagram of experimental arrangement.  

 

Temperature effect  

 

The temperature effects on the functional response were investigated with sprat (87.2 ± 6.6 

mm total length) at five temperatures: 5, 8, 12, 16 and 20°C (±0.2°C). Three to four 

experiments were performed with different fish groups of 20-30 individuals per temperature. 

Sprat were acclimatized slowly from an ambient temperature of 12°C to the target 

temperature in the experimental tank within one to four weeks (maximum change of water 

temperature per day = 0.6°C). The sprat for the 5°C experiments were kept separately in a 

storage tank.  

 

Fish size effect  

 

The fish size effect on the functional response was investigated with three different sprat size 

classes (87.2 ± 6.6, 63.0 ± 5.3 and 37.1 ± 3.2 mm total length) at 16°C. The data of the 

largest size class originated from the temperature effect experiments of the present study 

and the data for the mid-sized fish (63 mm) were adopted from Brachvogel et al. 2013. The 

experimental set-up was similar for all size classes besides tank dimensions: experimental 

tank was smaller (fish chamber = 239L and collecting chamber = 162L) and thus 
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experiments were performed with less individuals of 10-20. The use of a larger experimental 

tank for the largest size class (87.2 mm) allowed normal feeding behaviour of sprat.  

Data analyses 

 

The prey concentration (Ct) for a 10-min time interval was calculated from Ct = Nt/FR, where 

Nt is the total number of prey items (N) in the collection-cup divided by the length of the time 

interval, and FR is the overflow rate (2.8-3.8 Lmin-1). The recorded videos were played with 

half-speed to determine the average biting rate for each 10-min time interval of an 

experiment. In each 10-min time interval 10–20 individual fish were tracked. Fish were 

selected randomly. Each individual fish was tracked for 10–60 s, and its biting rate (biting 

acts s-1) was determined visually. It was considered that only one prey item was consumed 

per biting act. 

 

Model fitting 

 

We analysed the feeding responses of sprat in relation to different prey concentrations of 

Artemia salina nauplii using nonlinear models where both temperature and fish-size-effects 

were included. The analysis was performed using nls-function in R (R Core Team 2014; 

Version 3.1.1). Model diagnostics followed descriptions in Ritz and Streibig (2008). A 

Michaelis-Menten-model, which is mathematically equivalent to Holling´s disc equation 

model (1959), was used to represent the expected biting rate (BR; s-1) as a function of prey 

concentration (conc; L-1): 

 

BR = BRmax * conc / (k + conc )      (1) 

 

Three different models were used where temperature (T; °C) and length effects (cm TL) for 

the two parameters k and BRmax were included. Models were compared via AIC following 

an IT-Approach (Burnham and Anderson 2004; Mazerolle 2006). As a first step, we applied 

equation (1) to all data measured at 16°C grouped per fish size and separately to all data 

measured for 8.7 cm fish grouped per temperature. This allowed visualising trends of BRmax 

and k with either temperature or fish size.  The parameter k decreased linear with fish size, 

whereas BRmax increased with fish size (Figure 2), but not clearly in a linear way. Both 

parameters increased with temperature in a nonlinear function (Figure 3). Thus, temperature 

and length effects were included as a nonlinear model adopted from Lefébure et al. (2014) 

for BRmax in two of the tested models, whereas length effects were model to be linear.  

Finally, a set of three models was compared and the model with the highest probability of 

being the best was chosen as final model.  
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Figure 2. Change of the two parameters (BRmax and k) from equation 1 with fish size [cm total 

length].  

 

 

 

 

  
Figure 3. Change of the two parameters (BRmax and k) from equation 1 with water temperature 

[°C].  

 

RESULTS 

 

The feeding rates for all size classes of sprat and for each experimental temperature 

followed Holling's type II functional response curve. The frequency of feeding fish was high, 

but decreased slightly from 98.7% at 20°C to 84.5% 8°C (Figure 4). Only at 5°C much less 

fish were feeding (26.3%). Feeding rates of sprat on A. salina increased with increasing 

temperatures (Figure 5). Of the three tested models to explain functional response of sprat in 

relation to temperature and fish length, we finally chose Model 3 as the model with the 

highest probability of being the best (Table 1). Model 1 assumes linear relationships of 

BRmax and k for length and temperature, the other two models include a nonlinear 

relationship for BRmax. As Model 3 has the lowest AIC and lowest number of parameters, 

we suggest using this formula for further applications. Using our final model 3 (Table 1), we 

calculated three different Q10 values for the different fish sizes. Small fish with 3 cm TL have 

a Q10 of 3.3, larger fish with 6 cm TL have a Q10 of 1.8 and the largest fish have a Q10 of 1.6. 

There was a clear size effect for the functional response of sprat preying on A. salina nauplii. 

BRmax increased with increasing fish size whereas the parameter k decreased with 

increasing fish size (Figure 2). The difference was especially pronounced between 3.7 cm 

fish and the larger ones. The smallest fish had much lower maximum biting rates than fish of 

6.3 or 8.7 cm total length.  
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Figure 4: Frequency of feeding sprat [%] per temperature [°C] when preying on A. salina. 

 

 

 

Table 1: Set of fitted models to explain functional response (BR; s
-1

) of sprat preying on A. 

salina nauplii at various concentrations (conc; L
-1

) in relation to different temperatures (T; °C) 

and fish lengths (L; cm total length) 

Model Formula P Estimate AIC 

 
1 

 

BR =   
((𝑎_𝐵𝑅𝑚𝑎𝑥∗ 𝑇 − 𝑐_𝐵𝑟𝑚𝑎𝑥 ∗ 𝐿 + 𝑏_𝐵𝑅𝑚𝑎𝑥) ∗ 𝑐𝑜𝑛𝑐)) 

((𝑎_𝑘 ∗𝑇 −𝑐_𝑘∗𝐿+𝑏_𝑘) + 𝑐𝑜𝑛𝑐))
 

 

a_BRma

x 

b_BRma

x 

c_BRma

x 

a_k 

b_k 

c_k 

0.116 

-1.318 

-0.158 

0.372 

26.041 

2.292 

 

-434 

 

 

 

 

2 
BR =   

((−𝑎_𝐵𝑅𝑚𝑎𝑥+𝑏1∗log(𝑇)+𝑏2∗  log (𝐿)) ∗ 𝑐𝑜𝑛𝑐)) 

((𝑎_𝑘 ∗𝑇 −𝑐_𝑘∗𝐿+𝑏_𝑘) + 𝑐𝑜𝑛𝑐))
 

 

a_BRma

x 

b1 

b2 

a_k 

b_k 

c_k 

3.249 

1.115 

0.938 

0.029 

33.433 

2.617 

-507 

3 
BR =   

((−𝑎_𝐵𝑅𝑚𝑎𝑥+𝑏1∗log(𝑇)+𝑏2∗  log (𝐿)) ∗ 𝑐𝑜𝑛𝑐)) 

((−𝑐_𝑘∗𝐿+𝑏_𝑘) + 𝑐𝑜𝑛𝑐))
 

 

a_BRma

x 

b1 

b2 

b_k 

c_k 

3.324 

1.111 

0.937 

33.946 

2.626 

-509 

Note: P = parameter; AIC = Akaike´s information criterion; log = natural logarithm 
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Figure 5. Measured (dots) and modelled (lines) feeding rates of sprat (~ 8.7 cm total length) 

feeding on different concentrations of A. salina nauplii at five temperatures. For details on 

Model 3 see Table 1 and text.  

 

 
Figure 6. Measured (dots) and modelled (lines) feeding rates of sprat at 16°C feeding on 

different concentrations of A. salina nauplii separated by fish size. For details on Model 3 see 

Table 1 and text.  
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DISCUSSION 

 

The present results indicate strong relationships between functional response and 

temperature in sprat. Studies on roach and perch have demonstrated strong effects of 

temperature on feeding rates (Q10 = 3.1-3.7; Linløkken et al. 2010). These values are similar 

to those found in the present study for our smallest fish size class (Q10 = 3.3). However, 

larger fish had (according to our final model), much lower Q10 values. Small sprat exhibits 

other environmental conditions than larger fish, which undertake daily vertical migrations 

associated with rapid changes in temperature. Juvenile fish, however, are mainly abundant in 

the coastal zones or upper water layers with higher and more constant temperatures. Thus, 

they are able to feed faster at higher temperatures, whereas larger individuals (adults) may 

reach their maximum possible biting rates at even lower temperatures.   

 

The proportion of feeding sprat was high at the temperature range from 20°C to 8°C (> 80%; 

Figure 2). This corresponds to field observations made in spring and summer (Bernreuther 

2007). However, at 5°C only 26.3% of sprat were feeding in our study. Stomach data from 

March 2013 (western Baltic Sea) revealed a similar rate of 25.24% at 1.07 ± 0.28 °C 

(unpublished data). This indicates that sprat is able to feed over the entire year even at 

relatively low temperatures, but benefits from higher water temperatures above 8°C.  

 

Feeding rates of sprat increased with body size in the present study, which is consistent with 

previous findings for other fishes (Breck and Gitter 1983; Hjelm and Persson 2001; Persson 

1987; Persson et al. 1998). Larger sprat can pronounce higher absolute swimming speeds 

than smaller ones, so that they are able to reach the next prey item much faster than smaller 

sprat. In addition, the visual faculty of larger sprat might be better than for small juveniles due 

to higher development of their retina. Thus, larger fish might detect prey items better even at 

a higher distance than smaller sprat. The size-dependent development of fish retina was 

demonstrated for the bluegill (Lepomis macrochirus) by Hairstone et al. (1982). Blaxter and 

Jones (1967) also found for herring (Clupea harengus) a positive correlation between the 

retinal development and body size. Another possible reason for the higher feeding rates is 

that handling time decreases exponentially with increasing fish size and then remains 

constant above a given fish size (Werner et al. 1981, Mittelbach 1981, Gill and Hart 1994). 
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          Appendix VIIb 

Another critical period: the importance of timing of the early juvenile stage for the 

potential growth performance in Baltic sprat 

 

Günther, C., Temming, A., Meskendahl L., Kulke R., Herrmann JP. (University of 

Hamburg, P3) 

Abstract 

Most recruitment determining mechanisms in marine fish species act in the earliest life-

stages, when mortality is highest. In Baltic sprat, a clupeid schooling fish with an extended 

spawning season, extensive research effort was invested to uncover processes in the larval 

stage that regulate year-class strength. However, the large amount of recruitment variability 

is still unexplained. Previous studies showed that the amount of larvae is unrelated to the 

number of YoY-recruits, highlighting the importance of the post-larval life-stage as a critical 

period modulating year-class-strength. In order to detect recruitment regulating mechanisms 

in the post-larval life-stages of Baltic sprat we performed a simulation study on growth and 

food demand of YoY-sprat wrapping up a comprehensive database on otolith-derived growth 

rates and experimental investigations on feeding habits. We assumed a spawning time from 

February to August and modeled growth of various seasonal cohorts in relation to 

temperature. In a first simulation approach, we converted the daily length increases into the 

equivalent required amount of energy, applying a bio-energetic budget approach. We found 

that seasonal cohorts originating from the first half of the spawning season have a high total 

energy demand in the juvenile stage in contrast to later spawned cohorts despite a similar 

growth performance of early and late born sprat. Later spawned cohorts experience 

comparatively lower temperatures as early juveniles which reduces their metabolic costs in 

an already food demanding life stage. In a second simulation approach we calculated 

maintenance concentrations for seasonal cohorts applying a length and temperature 

dependent relationship between prey concentrations and snatching rates. We found that 

cohorts from the first half of the spawning season, which have the potential to grow fast, 

soon rely on high maintenance rations to fulfill the metabolic demands of a large body size. 

In contrast, later cohorts with a similar growth potential reach large body sizes accompanied 

by high maintenance rations later in the season. Thus, the risk of starvation and depletion of 

energy reserves before the onset of winter is higher for earlier than for later born cohorts. A 

high cumulative energy demand and the disadvantage of being too large too early in the 

season, have the potential to decrease survival rates of early born cohorts and thus 

underline the importance of the right timing of the post-larval, early juvenile stage. Our results 

are supported by previous studies showing that successful YoY-recruits of Baltic sprat stem 

from the second half of the spawning season only.  

Introduction 

Recruitment in Baltic sprat in highly variable (ICES 2015) and not well understood. Previous 

studies have pointed out that mechanisms influencing year-class strength take place after 

the larval phase in the early juvenile stage (Köster et al. 2003, Baumann et al. 2006) 

However, this life-stage was not adequately sampled during last projects (STORE, GLOBEC) 
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which investigated the population dynamics of Baltic sprat focusing on offshore areas and 

basins where spawning of sprat takes place. The reason for that can be twofold: First, young 

sprat are too large to be sampled by standard plankton nets (e.g. Bongo nets) but too small 

to be caught by the fishing net and second, main nursery habitats of young sprat are 

probably located in shallow coastal habitats which were not in the focus of sprat recruitment 

research so far. Despite an expanded spawning season of sprat from February to August, 

recruits stem from eggs spawned late in the season (~July, Baumann et al. 2008) when 

maximal spawning effort has already taken place (~May, Voss et al. 2012). Baumann et al. 

(2006) found a high correlation (r2 > 0.7) between recruitment strength of sprat and surface 

temperatures in August in the central Baltic Sea They suggest that late cohorts benefit from 

high summer temperatures in the larval stage resulting in fast growth rates of these cohorts 

and a low cumulative mortality. However, biological mechanisms behind these correlations 

are not understood and the fate of early cohorts remained uncertain. In a further study 

analyzing the temporal origin of post-larval metamorphosing sprat sampled in near-shore 

areas in summer time, Günther (2008) found individuals originating from the first half of the 

spawning season with first feeding dates in April. However, most recruits sampled in autumn 

of the same year were summer born and thus originate from later spawned eggs. Thus, 

mechanisms acting in the shallow coastal zones of the Baltic Sea during the post-larval early 

juvenile stage may modulate the survival pattern and can broaden our understanding why 

early cohorts disappear while late cohorts survive until autumn. During the post-larval stage, 

sprat exhibit strong growth rates while experiencing the highest temperatures during their 

whole development. At the end of the larval stage, sprat start to increase their body weight 

and height during metamorphosis (Günther et al. 2012) and then increase their length and fat 

reserves during the juvenile stage. To maintain high growth rates, food demand is steadily 

increasing as sprat become larger: A 50 mm sprat consumes ten times more than a 30 mm 

individual under ad libitum conditions in the laboratory (Günther et al. 2015). Furthermore, 

the required food needed to growth at high temperatures (16°C) is 30% higher than feeding 

at lower temperatures (22°C). Thus, the requirements of the nursery habitats concerning 

food availability are high and may be critical for the growth performance in the juvenile life-

stage.  

In this study, we investigated physiological boundaries that might emerge in juvenile nursery 

habitats and can have consequences for growth performance, survival and recruitment of 

Baltic sprat. To investigate the fate of different seasonal cohorts originating from the 

extended spawning season, we used two different simulation approaches modeling the 

growth of seasonal cohorts as a function of temperature. In a backwards approach (1) we 

reconstructed the energy demand of seasonal cohorts. In a forward approach (2), we 

calculated the maintenance and optimum ration young sprat need during the seasons. To 

validate the model results we analyzed four different years (2002, 2003, 2006, and 2007), 

where previous studies uncovered the temporal origin of autumn survivors by the 

microstructure analysis of otoliths (Baumann et al 2008, Günther et al 2012). 

Material & Methods 

General ideas of simulation approaches  

Both simulation approaches performed in this study are based on similar assumptions 

(Figure 1). In the first approach (1), we simulated the length growth as a function of 

temperature and deduced the food demand (backwards approach) and in a second approach 
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(2), we assumed a food concentration and calculated the theoretical length growth (forward 

approach). In the backwards approach (1) seasonal cohorts start to develop as an egg 

according to a spawning period. Eggs develop to larvae, and larvae grow in length and 

become juveniles. The simulated daily length growth is than converted into a mean energy 

demand in Joule and to a corresponding number of Acartia sp. assuming a bio-energetic 

budget equation. In the forwards approach (2), the simulation of length growth starts with 30 

mm, e.g. in the post-larval stage. Every day, a length growth increment is added to the length 

of a cohort. This growth increment is calculated assuming a certain plankton concentration. 

Using a relationship between plankton concentration and snatching rate at different length 

and temperatures (Kulke et al. 2016), we calculated the number of prey items (Acartia sp.) 

that can theoretically be consumed per day. The daily food amount is than converted to the 

daily length increment assuming the same bio-energetic budget equation as in the 

backwards simulation approach (1). In the best case (optimal growth) the daily length 

increment corresponds to the growth performance reconstructed from otoliths of successful 

recruits. The prey concentration when growth of a cohort is next to zero is defined as the 

maintenance concentration needed to keep up metabolic functions. This simulation is 

performed with various plankton concentrations to estimate optimum/maintenance rations for 

a large range of length classes and calendar days. We performed both simulation 

approaches applying surface temperature profiles from the years 2002, 2003, 2006 and 2007 

measured at Kiel Lighthouse in the Western Baltic Sea. For these four years, microstructure 

otolith data of YoY-sprat exist documenting which seasonal cohorts were “successful” and  
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Figure 1: Schematic description and calculation steps of both simulation approaches; 

numbers and letters indicate different calculation steps (see text).  

Backwards simulation 

Early development and length growth 

The first step of this approach was the simulation of length growth of different seasonal 

cohorts (step 1a, Figure 1). We simulated the growth of 19 seasonal cohorts assuming a 

spawning period from February/March to the middle of August. All cohorts start with a 

temporal distance of 10 days as recently spawned eggs. Egg and early larval development 

start was modeled as a function of temperature according to Petereit et al. (2008). The 

fractional contribution of daily egg/larval development was calculated based on the 

respective temperature of the day. The larvae start to feed and start to grow with a length of 

5mm standard length according to Alshuth et al. (1988). Functions for length growth of larval 

and juvenile sprat in relation to temperature were derived from otolith-based back-calculated 

length growth rates at corresponding temperatures measured in the field. Hereby, we used 

otolith data on daily increment growth of more than 800 fishes sampled in the Baltic Sea 

during previous studies comprising YoY-sprat from 2002 and 2003 from Baumann et al 

(2008) as well as 2006 and 2007 from Günther et al. (2012). Daily otolith growth was 

converted to length growth using a non-linear back-calculation method taking into account 

the reduction of length growth during metamorphosis from larvae to juveniles (Günther et al. 

2012). We established linear functions of daily length growth rates in relations to temperature 

measured in the field for 5 mm intervals resulting in 4 equations for the larval stage (5-25 
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mm), 5 equations for the early juvenile phase (25-50 mm)and six equations for the juvenile 

stage (50-80 mm)(Table 1). 

Table 1: Simulation settings for development and growth of seasonal cohorts of YoY-

sprat (calculation step 1a); T: temperature  

Parameter/setting and description Unit Equation Source 

GRegg, Egg developement % of total 

developm

ent 

GRegg = (3.9255*T0.6296)*0.01 Petereit et 

al. 2008 

GRyolk, Yolk sac development % of total 

developm

ent 

GRegg = 1.7621*T0.7688*0.01*4 Petereit et 

al. 2008 

GRlarvae I, length growth 5-10mm mm GRlarvae I = 0.0055*T+0.5949 this study 

GRlarvae II, length growth 10-15mm mm GRlarvae II = 0.0304*T+0.1409 this study 

GRlarvae III, length growth 15-

20mm 

mm GRlarvae III = 0.0235*T+0.1342 this study 

GRlarvae IV, length growth 20-

25mm 

mm GRlarvae IV = 0.0095*T+0.2113 this study 

GRearly juv I, length growth 25-

30mm 

mm GRearly juv I = 0.0332*T+0.1819 this study 

    

GRearly juv II, length growth 30-

35mm 

mm GRearly juv II = 

0.0306*T+0.1415 

this study 

GRearly juv III, length growth 35-

40mm 

mm GRearly juv III = 0.0361*T+0.175 this study 

GRearly juv IV, length growth 40-

45mm 

mm GRearly juv IV = 

0.0256*T+0.4438 

this study 

GRearly juv V, length growth 45-

50mm 

mm GRearly juv V = 

0.0217*T+0.5494 

this study 

GRjuv I, length growth 50-55mm mm GRjuv I = 0.0219*T+0.5129 this study 

GRjuv II, length growth 55-60mm mm GRjuv II = 0.0278*T+0.3387 this study 

GRjuv III, length growth 60-65mm mm GRjuv III = 0.0368*T+0.0753 this study 

GRjuv IV, length growth 65-70mm mm GRjuv IV = 0.0431*T-0.134 this study 

GRjuv V, length growth 70-75mm mm GRjuv V = 0.0355*T-0.971 this study 

GRjuv VI, length growth 75-80mm mm GRjuv VI = 0.0299*T-0.0864 this study 

 

Consumption and number of prey items  

We converted the daily length increase of each cohort into daily amounts of energy needed 

to perform the simulated growth and followed hereby roughly the protocol described in 

Günther et al (2015).The general equation of this conversion is the energy balance equation 

of Winberg (1960): 

C = G+ RRoutine + Rfeedact + RSDA + E + F      (1) 

Here the consumption (C) is the sum of growth (G), losses for excretion (E) and faeces (F), 

and metabolic costs for routine respiration (RRoutine), feeding activity (Rfeedact) and specific 

dynamic action (RSDA). All addends of equation (1) were transferred in Joule. The terms E, F, 
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Rfeedact and RSDA were assumed to be 10 % of the total consumption which denotes a 

conservative estimation of conversion efficiency. For the term G, the length of a cohort at a 

specific day was converted into percent dry weight of wet weight (step 1b) following a 

segmented regression on % dry weight versus standard length (Table 2). This regression 

based on a comprehensive dataset of early juveniles (Günther et al. 2008) and juveniles 

sampled during July to August in 2006. The water content (reciprocal value of %DW) was 

converted into an energy content (step 1c) following the equation published in Günther et al 

(2015) (see Table 2). The energy content was multiplied with a length specific dry weight 

(Table 2) to calculate the energy content of an individual. By using the difference between 

two lengths of consecutive days the energy gain of a specific day was received which was 

used as term G in equation (1). Costs for the routine metabolism (term RRoutine) were 

calculated in three steps: We converted length into wet weight (step 1d, Figure 1) using a 

simple allometric function (Table 2). According to Meskendahl et al. (2010) we calculated the 

metabolic costs for the routine metabolism (step 1e in Figure 1, Table 2) and used an oxy-

caloric factor for the conversion into Joule published by Elliott & Davison (1975) (step 1f in 

Figure 1, Table 2). Using the daily energy gain and the costs for routine metabolism, we 

calculated the energy which is needed to be consumed daily by a single sprat from a 

seasonal cohort using equation (1). Furthermore, we assumed that sprat is feeding on 

Acartia which is an abundant copepod in the western Baltic Sea and converted the 

consumption into individuals consumed per day. 

Table 2: Equations and formulas needed for the conversion of length growth into 

consumption (backwards approach (1)); DW:dry weight; WW: wet weight; SL: standard 

length; WC: water content; T:temperature; TL: total length; conc: concentration of 

Artemia salina. 

Parameter/setting 

and description 

Unit Equation Calculation 

step (Figure 

1) 

Source 

%DW <49mm; % dry 

weight of wet weight 

 %DW=0.107*SL+14 1b, 2f Günther 2008;  

%DW >49 & < 

75mm; % dry weight 

of wet weight 

 %DW=0.433*SL-2.5312 1b, 2f Günther 2008 

%DW >=75mm; % 

dry weight of wet 

weight 

 %DW=0.1*SL+20.8 1b, 2f Herrmann et al 

unpublished 

data 

EC; Energy content J*g-1 EC =-28964*WC+46153 1c, 2g Günther et al 

2015 

DW; dry weight G DW = 5E-08*SL3.9673 1c, 2g Günther et al. 

2008 

WW; wet weight G WW=1R-06*SL3.5599 1d, 2c Günther et al 

2008 

Rroutine; Costs for 

Routine metabolism 

mgO2 h
-1 Rroutine=0.074*WW1.077*e0

.08*T 

1e, 2d Meskendahl et 

al 2010 

Rroutine; Conversion 

into Joule 

J*d-1 Rroutine=Rroutine[mgO2 h
-

1]*13.72 J mgO2
-1*24h 

1f, 2d Elliott & 

Davison 1975 

EC prey; energy J*Ind-1 EC prey=0.17 1g, 2b Kerambrun 
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content of Acartia 

sp.  

1987 

SR; Snatching rate Ind*sec-1 SR=((3.23791+1.11154*

log(T)+0.93713*log(TL))

*conc)/((-

2.62572*TL+33.94642)+

conc) 

2b Kulke et al. 

2016. 

Forwards simulation 

In the forward simulation, seasonal cohorts start to grow beginning with a length of 30 mm 

according to model assumptions, temperature and prey concentration. Each simulation day, 

a daily length growth increment is calculated and added to the start length at the 

corresponding day. The resulting length is the start length at the following simulation day.  

The central step in the forward approach is the conversion of the prevailing prey 

concentration into the number of prey items that can theoretically be consumed by a fish 

(Figure 1, step 2a). The equation used here (Table 2) bases on a comprehensive 

experimental study from Kulke et al. (2016), where the feeding/snatching rate of young sprat 

was estimated as a function of prey concentration (Artemia salina) for a length range from 4-

8 cm at 5, 8, 12, 16, and 20°C. In general, Kulke et al. (2016) showed that snatching rate 

increases with length and temperature. Assuming that feeding takes place during daylight, 

we calculated the energy amount that can be consumed assuming that young sprat feed on 

Acartia and that snatching rates for Acartia are the same as for Artemia salina. (Figure 1, 

step 2b). In the reverse way to the backwards simulation approach, we used the daily 

consumption to calculate the energy gain accounting for a temperature dependent routine 

metabolism (Figure 1, step 2e) and assuming the same bio-energetic budget than in 

approach (1) (Figure 1). 

Lastly, the daily energy increase was converted into the daily length growth increment. 

Therefore, the start length at the corresponding simulation day was translated into percent 

dry weight and total energy content analog to simulation approach (1) (Figure 1, step 2f and 

2g; Table 2). The energy gain calculated in the steps 2a – 2e, was then added to the total 

energy content. Finally, the energy content was re-converted into length to estimate the daily 

length growth increment. Daily length increase was limited according to growth rates back-

calculated from otoliths of autumn caught survivors. 

Simulation runs were performed for different prey concentrations (0.01-10 Ind•L-1 by 0.01 

Ind•L-1 steps; n =100) which were kept constant over the season. Length, day and prey 

concentration for each cohort were extracted when growth was almost zero which 

corresponds to the maintenance ration. The forwards simulation was restricted to the year 

2003, which is the year with highest recruitment of the four years examined with the 

backwards approach. 

Results  

Backwards simulation 

The simulation of length growth shows that cohorts from the middle of the spawning season 

(May) were largest 150 days after spawning (Figure 2e-h) irrespective of the simulation year 

despite distinct differences in input temperature profiles (Figure 2a-d). Lowest length growth 
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can be observed in cohorts that started at the beginning and at the end of the spawning 

season. However, these cohorts were judged as unsuccessful as they could not be sampled 

in late summer and autumn (black lines in Figure 2). In contrast, successful cohorts (red lines 

in Figure 2) exhibit various growth performances including the best ones (cohorts from May) 

in 2002 and 2007. Interestingly, the main cohort of survivors (thick red line, Figure 2) is not 

the cohort with the largest length growth potential. The number of prey items needed to 

accomplish these length growth performances varies strongly between seasonal cohorts 

(Figure 2i-l). Except of the first cohorts, early cohorts including those spawned in May need 

the highest prey numbers per day. This is especially the case for larger individuals. 

Irrespective of the simulation year, later cohorts like the main cohort of survivors, need a 

lower number of prey items while performing similar length growth compared to the best 

growing cohort from May. 

 

 

Figure 2: Results of backward simulation; a-d: surface temperature profiles measured 

at Kiel Lighthouse in the corresponding simulation years; e-h: simulated length 

growth of seasonal cohorts for 150 days; dashed horizontal line marks the 5 mm limit 

when length growth started (all length lower than 5mm are artificial and display the 

fractional development rather than length); i-l: daily consumed number of prey items 

ingested per sprat assuming feeding on Acartia spp. In the first 150 days. Red lines 

represent cohorts that exhibit the day of first increment formation at the same time 

than YoY-survivors which were sampled in late summer and autumn. The fat red line 

indicates the main cohort of survivors. Black lines indicate cohorts resulting from the 

extended spawning season that have not been sampled in autumn. 
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Forwards simulation 

The prey concentration needed for maintenance, i.e. balancing metabolic costs without 

growing, is determined by length and season. The concentration for maintenance of young 

sprat increased with increasing length. For instance, in September 2003 (Figure 3), 

individuals with a length of about 50 mm could balance their metabolic costs with a constant 

prey concentration of 0.5 Ind/L-1. With a length of about 60 mm, the concentration doubles 

and exceeds 2.0 Ind/ L-1 when sprat reach a length of 70 mm. With progressing season, the 

prey concentration needed to fulfill metabolic demands increases. Following the length 

growth trajectories generated with the backwards simulation, the earliest cohorts need the 

lowest prey concentrations to raise maintenance costs at distinct sizes.  

 

Figure 3: Maintenance ration for different length classes throughout the summer in 

2003 according to the forward simulation approach. Colors of areas indicate prey 

concentrations (Ind*L-1) needed to balance metabolic costs. Lines indicate growth 

trajectories of seasonal cohorts generated with the backwards simulation; Red lines 

represent cohorts that exhibit the day of first increment formation at the same time 

than YoY-survivors which were sampled autumn. The fat red line indicates the main 

cohort of survivors. Black lines indicate cohorts resulting from the extended spawning 

season that have not been sampled in autumn. 
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Discussion 

Total energy demand of seasonal cohorts 

The backwards simulation approach generates two major results: (1) the total demand of 

prey items is lower for later seasonal cohorts that stem from the second half of the spawning 

season and (2) in four years when daily increments on otoliths of YoY-sprat were analyzed 

(2002, 2003, 2006, 2007), most individuals that survived until autumn/late summer originate 

from the second half of the spawning season.  

We assume that later cohorts benefit due to a comparatively lower temperature in the 

juvenile stage which reduces the metabolic costs in contrast to earlier cohorts, exhibiting 

higher temperatures. Consequently, the timing of the juvenile stage mainly influences the 

food demand. Thus, later cohorts have not only a benefit in the larval stage (Baumann et al. 

2008), but also in the juvenile stage. That might be an explanation for the second finding of 

the backwards simulation approach that more individuals of later cohorts survive until late 

summer and autumn. We found the highest growth potential in earlier cohorts. However, 

earlier cohorts have a higher energy demand and are thus more sensitive to growth 

reduction and starvation. If food availability in the early juvenile phase of earlier cohorts limits 

growth, the cumulative total mortality pressure on this seasonal cohort increases which might 

influence survival rates. In other words, low growth rates in the case of food deprivation 

elongates the stage duration and thus increases the risk of mortality, assuming that mortality 

decreases with increasing length. Such a selective survival for fast growing individuals may 

explain why the early cohort e.g. the seasonal cohort from May, is not the main cohort of 

survivors despite showing the highest growth potential. In contrast, the later cohorts have a 

slightly lower growth potential but are more robust to decreases in food availability because 

lower temperatures in the juvenile stage of these seasonal cohorts lead to a lower total 

energy demand to fulfill a just slightly lower growth performance. 

Maintenance rations of early and late born sprat 

The high total energy demand of earlier cohorts calculated in the backwards simulation 

implies that earlier cohorts need a higher amount of food. However, the prey concentration 

for maintenance is similar for early and late spawned cohorts. The reason for that is that 

early cohorts experience higher temperatures when they become larger. This increases 

snatching rates enabling these cohorts to eat more prey items at a similar prey 

concentration. Thus, maintenance concentrations of seasonal cohorts do not reflect the 

higher total demand of energy for earlier spawned cohorts. The strongest determinants for 

the concentration necessary to achieve maintenance ration are fish size and season 

(interaction between temperature and day length). In summer, when early cohorts enter the 

juvenile stage, necessary concentrations for larger individuals are smallest. In contrast, later 

spawned cohorts need larger concentrations at the same length as season progresses. At a 

first glance, the lower concentration needed for early cohorts in contrast to later cohorts are 

contradicting to the hypothesis that later cohorts have an advantage. However, individuals 

that are large early in the season rely on high prey concentrations for fulfill their maintenance 

for the rest of the growing season. In other words, the risk to starve before winter time 

increases. Individuals that are born later in the season need a slightly higher prey 

concentration for maintenance. However the period they need to bypass before winter is 

reduced and thus, the risk to starve before winter. Being too large too early in the season is 

unprofitable, which might explain why the share of early cohorts in autumn caught survivors 

is of minor importance. 
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Summary  

The results of both simulation approaches underline the advantages of later born individuals 

in the juvenile life-stage of Baltic sprat. On the one hand the total energy demand is lower for 

late seasonal cohorts. On the other hand, early cohorts might suffer from the fact that they 

achieve large body size early in the season and rely on high prey concentrations for the rest 

of the growing season. Thus, early cohorts suffer during the juvenile stage in summer and 

their probability to survive until autumn is reduced. The interaction between temperature in 

nurseries and food demand of juvenile sprat determines the temporal origin of cohorts 

dominating autumn recruits.  
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APPENDIX VIII 

Fish egg - buoyancy– experimental and field approach 

Petereit, C., (GEOMAR, P1) and Huwer, B., (DTU-Aqua, P2)  

 [Report section includes results of joined activities and contributions from Hans-Harald 

Hinrichsen, Burkhard von Dewitz (both P1), Sofia Nyberg and Anders Nissling in the frame of 

collaborative experiments with the BONUS INSPIRE project]  

Introduction 

What are potential drivers of change which may impact survival, development duration or 

(spatial) distribution of early life stages of cod and other commercially important key species? 

To address some of these complex processes we have selected, (partly preliminary) results 

from three case-studies. The objective of the first study is to compare the potential 

dimensions of egg buoyancy differences over several spawning seasons to assess 

general patterns. The objective of the second study was to investigate the importance of 

different oxygen and salinity conditions in relation to the available habitat determined 

by the eggs´ specific density. This is particularly interesting by comparing different 

hydrographic conditions which have recently been changed due to the Major Baltic Inflow 

(MBI) end of 2014. The third case study is an example how to use field-derived egg 

diameter data in combination with buoyancy data and to link this with stock 

characteristics to improve the current estimation method of a spawning stock 

biomass. 

Methods: 

Egg sampling: 

Eggs were caught by ‘Helgoländer Larven Netz’ (HLN, 143 cm diameter, 500 μm mesh size) 

towed vertically (0.2 knots) from ~7 m above the bottom to the surface (Petereit et al., 2009). 

Alive eggs were immediately sorted by species from the plankton samples with 3 mm 

diameter pipettes and staged under a stereomicroscope (WILD M3Z) at 5-9°C in the 

temperature controlled laboratory on RV ALKOR (Petereit et al., 2009). Egg diameter was 

measured with the internal scale in the stereomicroscope to the nearest scale bar below 

(0.06 mm) at 240x magnification. Accordingly, eggs were divided into small (1.09-1.26 mm), 

medium (1.27-1.38mm) and large (1.39 -1.46 mm) diameter size classes. Only alive eggs 

with clear and sharp developing cell structures were used for measurements in the density 

gradients. Egg number varied among samples, 10-15 eggs per size class was envisaged, but 

sometimes sample sizes of eggs were lower due to low abundance in the haul. 

Egg strip spawning and artificial fertilization: 

Fish in spawning conditions was caught by scientific trawling on RV ALKOR (Young fish 

trawl; haul duration 30 minutes with 3 knots trawling speed).. The selection of running ripe 

females and males from the catch including the fertilization was completed within 30 min 

after the haul was on deck. Unfertilized eggs were strip spawned into 1l PVC cylindrical 

cones filled with artificial seawater of 20 psu between 6 and 9°C. Spermatozoa of three 

males (2-3 drops per male) were activated with artificial seawater (20 psu, 6-9°C) and poured 

into the cone to fertilize the eggs. The detailed procedure of individual selection and 
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fertilization process was described previously in Petereit et al. (2014). After 60min fertilization 

period, all positively buoyant eggs were removed from the cone and transferred into fresh 

seawater. Unfertilized or bad-quality eggs sank within the cone and could easily be 

discarded. A first visual check was performed to estimate egg batch quality before the eggs 

were stored in 500ml PVC containers for 24h at 6°C in a scientific refrigerator. The next day, 

30 eggs were size-measured under a stereomicroscope (WILD M3Z including scale bar), a 

picture was taken to justify egg quality of each batch and the eggs were inserted into the 

density gradient. 

Egg density measurements: 

We used density gradient columns similar to the setup described by Coombs (1981) and 

Coombs et al. (1985). This general method has been regularly applied to measure fish egg 

density (neutral egg buoyancy) for various Baltic fish species including cod, sprat and flatfish 

from many areas of the Baltic Sea (Nissling et al., 1994, 2002; Petereit et al., 2009; 2014).  

A minimum of 3–5 calibrated glass floats (Spartel, UK) assured the determination of accurate 

linear calibration curves (r2 > 0.99) for each salinity gradient, which were used to convert the 

measured heights of the inserted eggs in the column into the respective density values. As 

density relations are known to be highly temperature sensitive, all measurements were 

conducted in a temperature controlled climate cabinet with temperature being controlled in 

addition at the surface of each column after each measurement. The adjusted temperatures 

differed between the cruises since 2009 but ranged from 5-9°C and were chosen according 

to the tolerable temperature for all three species (Westernhagen von, 1970; Nissling, 2004; 

Petereit, 2004; Petereit et al., 2008). Only eggs with regular cell divisions were inserted into 

the salinity gradient to assure optimal egg quality. After a settling time of 60 min, the position 

of every single egg in the salinity gradient column was recorded to calculate the respective 

density value.  

Abiotic environment measurements: 

The depth at which each egg would have had potential density equilibrium was calculated 

from temperature, salinity, oxygen, and sigma-t profiles measured using a CTD (ADM- 

company) at each station.  

 

More detailed methods and results for the different case studies 

Inter annual pattern in egg buoyancy & potential drivers of change - Egg size 

One case study is the continuation of previously initiated work by Petereit et al. (2009) who 

had analyzed live- fish egg samples from the Baltic Sea and measured their densities. The 

specific egg density determines the specific neutral buoyancy level of an egg. On this level, 

eggs float, develop and get transported by underlying currents. Thus, these density layers 

define the abiotic environment (temperature, salinity, oxygen, pH) experienced by the eggs. 

Petereit et al. (2009) reported for one of their analyzed cruises a significant effect of egg size 

on neutral egg buoyancy during the peak spawning season in May/June 2008. This resulted 

in a significantly different depth distribution between different egg size classes. The largest 

egg size class experienced significantly warmer (+1°C) and less (~0.5 psu) saline conditions 

compared to the smaller size classes. The magnitude of these differences is important if the 
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physiological tolerance limits of the eggs are close to the in situ measured values. In sprat, 

successful egg survival (hatching) potential is reduced below 5°C and mortality increases 

significantly below 4°C (Nissling, 2004; Petereit et al., 2008).  

For this case study, most data were available for sprat (Sprattus sprattus L.), a clupeid fish 

characterized by an undetermined batch spawning mode. Eggs had been previously 

sampled during scientific cruises in April from 2009-2013 on several stations during fish early 

spawning season in the Bornholm Basin, Baltic Sea (Fig. 1A). This existing time series could 

now be continued in the frame of the BIO-C3 project during the April cruises in 2014 and 

2015.  

Results 

Data from the 6-year time series (data analysis from up to four different stations) confirm a 

positive relation between egg size and egg buoyancy for sprat (Fig. 1B) during April 

spawning seasons. Large eggs float higher in the water column compared to small eggs. The 

egg density was significantly different between size categories (p<0,0001 ANOVA, 

F:2;527=204). Inter-annual variation was detectable but in different magnitudes between 

stations (Fig.1 C). Highly significant differences could be observed, e.g. in the density 

distribution of the medium egg size category for 2009 and 2012 compared to the years 2014 

and 2015 on both stations BB23 and BB06 (ANOVA, F:3;81=23,1; Tukey HSD p<0,001 & 

F:5;79=9,0; TUKEY HSD; p<0,001).  

 

Fig. 1: A) Map of the four sampling stations in the Bornholm Basin (BB). B) Overall mean 

(±stdev) values of sprat egg density of the 6-year time period in relation to egg diameter. C) 

Station and year-specific mean (±stdev) of egg density distributions.  
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The inter-annual variation in the specific density layer was lowest for the largest diameter 

sprat eggs, thus reflecting rather stable density conditions (Fig. 2A). Medium-sized eggs 

showed more variation, however levels of the standard deviation do not indicate significant 

annual changes on the mean density layer (Fig. 2A). The egg density trend of the smallest 

egg size class was the most variable one. Egg density increased in 2014 and 2015 

compared to previous years, although with large variation in 2014. In 2015, the highest 

significant mean value in the egg density time series could be measured.  

 

  

Fig. 2 A) Egg diameter specific mean (± stdev) sprat egg density characteristics. Data points 

are connected by interpolating lines. No data are available in the large egg diameter category 

in 2011. B) Temperature on the mean egg density levels for the three diameter categories. 

Temperature threshold levels reducing (<5°C; light red) or highly significantly reducing (<4°C; 

dark red) the probability for hatching of viable larvae are taken from Nissling (2004) and 

Petereit et al. (2008). * no accurate CTD data available in 2011. 

Based on CTD data on the respective station, the abiotic parameters on the mean density 

levels could be determined (Fig. 2B; Salinity and oxygen not shown). Large sprat eggs 

experience a colder environment compared to medium or small-sized eggs during April (Fig. 

2B). The temperature levels are close to critical (below 5°C) or very serious low levels 

undercutting 4°C. The smallest egg diameter class exceeded the most critical temperature 

threshold levels which resulted in more or less suitable temperature conditions in all 

analyzed years. The years 2012 and 2013 were in general characterized by low April water 

temperature and 2014 and 2015 by significantly higher temperatures. The oxygen conditions 

in the analyzed density layers were also variable between years – however, if considering 

the threshold level of 2mg/l oxygen (Nissling et al., 2003), all egg diameter classes in all 

years and stations experienced values above that level. In April 2015, independent of size, 

all sprat eggs were above the critical threshold. This might be directly caused by the 

improved hydrographical condition due to the major Baltic inflow in December 2014 

(Mohrholz et al., 2015), but needs further to be investigated.  

 

Inter annual pattern in egg buoyancy & potential drivers of change - Oxygen and 

Salinity 

The second case study concentrates in particular on the modified hydrographic condition due 

to the major Baltic inflow (MBI) of high-saline and oxygen-rich North Sea water (Mohrholz et 
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al., 2015) between the two spawning seasons 2014 and 2015 in the central Baltic Sea and its 

consequence for the survival probability of fish eggs. The objective was to investigate the 

importance of different oxygen and salinity conditions in relation to the available 

habitat determined by the eggs´ specific density. Flounder (Platichthys flesus) were 

chosen as model species and individuals were strip-spawned and eggs artificially fertilized 

onboard during two cruises with RV ALKOR in April 2014 and 2015. In addition potential 

differences between individuals from the three ICES subdivisions (Bornholm Basin (SD25), 

Gdansk Deep (SD26) and southern Gotland Basin (SD28)) were considered. Survival 

probability of the egg batches was judged based on threshold levels of oxygen concentration 

above or below 1.5 ml/l and temperature above or below 2°C. This case-study was 

performed in close collaboration with the BONUS INSPIRE project (Dr. Anders Nissling) and 

most parts of this investigation have been extracted from the jointly supervised Bachelor 

thesis of Sofia Nyberg (2015).  

Results 

A total of 45 individual flounder batches from three ICES subdivisions could be analyzed 

during the two cruises (Tab. 1). In addition, 26 batches had been retrieved from other (gillnet) 

fishing activities performed in the frame of another project (BONUS INSPIRE). Stations are 

indicated in the map (Fig. 3A). The general egg characteristics diameter, egg specific gravity 

and buoyancy of the pelagic flounder eggs are presented in Tab 1. 

Tab.1: Diameter (mm), egg specific gravity (g*cm-3) and buoyancy (psu) of pelagic flounder 

eggs obtained in the Bornholm Basin, Gdansk Deep and Gotland Basin respectively, stated 

in mean±standard deviation in the upper row and range in the row below.  

 



84 
 

Fig. 3: A) Sampling and study area. B) Results of egg specific gravity measurements of 

Flounder batches during 2014 and 2015 cruises. C) Hydrographic profiles of a deep 

Bornholm Basin station in 2014 and 2015 with flounder egg layer indicated as grey shaded 

area. D) Resulting cumulative survival probability of flounder eggs per subdivision and year 

derived by comparing measured egg batch density and CTD derived environmental data 

using survival threshold levels for density (salinity) and oxygen. Figures compiled from 

Nyberg (2015). 

The measurements of the egg specific gravity (density) showed statistical differences 

between the Bornholm Basin and the Gdansk/Gotland areas (Fig. 3B; ANOVA, F2:42=39.12, 

p<0.01). The specific gravity of flounder eggs from the Bornholm basin were higher (1.012 ± 

0.001) than for eggs obtained in the Gdansk (1.010 ± 0.005) and Gotland (1.010 ± 0.001) 

basins, thus they achieve neutral buoyancy at higher salinities. Batches from Gdansk Deep 

and Gotland Basin were not statistically different (Fig. 3B; t-test, t28 = 1.99, p>0.05). Due to 

the MBI in 2014, the hydrographic profiles had changed between years as shown by an 

example from the Bornholm Basin (Fig. 3C). Accordingly, the cumulative survival 

probabilities of egg batches might have changed in those areas. The overall results indicated 

highly enhanced survival probabilities in Bornholm Basin 2015 (p<0.01), as egg survival 

increased from 47% in 2014 to 100% the following year (Fig. 3D). In Gdansk Deep the 

situation was similar, and survival probability increased from 13% to 100% (p<0.01) (Fig. 

3D). In Gotland Basin no difference in survival probability was identified, although the 

dominant cause of mortality shifted from sedimentation, i.e. due to low salinity conditions in 

2014, to oxygen deficiency in 2015 (p<0,01) (Fig. 3D).  
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Patterns and drivers of change: modeled combination between egg size, egg density 

and oxygen  

The third case study is an example how to use field-derived egg diameter data in 

combination with buoyancy data and to link this with stock characteristics to improve 

the current estimation method of a spawning stock biomass. The newly established 

relationship between egg diameter and buoyancy (floating depth) allowed quantifying the 

number of effective spawners which were able to successfully reproduce under ambient and 

hydrographic conditions. This study used eastern Baltic cod (Gadus morhua) eggs sampled 

during 8 years in the central Bornholm Basin (Fig. 4A).  

Results 

For the time period 1993-2010, large variations in the horizontal extent of spawning habitat 

(1000-20000 km²) and oxygen-dependent egg-survival (10-80%) was observed (Fig. 4F). 

The novel concept of an effective spawning stock biomass (eSSB) takes into account 

offspring that survive depending on the spawning stock age/size structure, if reproductive 

success is related to egg buoyancy and the extent of hypoxic areas. Effective spawning 

stock biomass reflected the role of environmental conditions for Baltic cod recruitment better 

than the spawning stock biomass alone, highlighting the importance of including 

environmental information in ecosystem-based management approaches. Presented results 

are extracted from the publication by Hinrichsen et al. (2016). 

Fig. 4: A) Sampling area including station grid in the Bornholm Basin. B) Multi opening 

closing net derived cod egg diameter to density relationship (2002-2010). C) Age structure 

derived mean egg densities according to Vallin and Nissling (2000). D) Age class dependent 
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egg survival potential assessed for different environmental conditions (inflow: good 

conditions; stagnation: bad conditions). E) Seasonal change in available suitable spawning 

area including calculated survival probability (1993-2010). F) Time series of spawning area 

extension and corresponding cod-oxygen related egg survival for different density levels 

(1009 kg*m-3 ~ 11psu; 1011kg*m-3 ~13,5 psu; 1013kg * m-3 ~ 16 psu at 5°C). G) Ricker 

stock recruitment curves without and including environmental information through the 

implemented age-specific egg survival coefficients. Figures are (partly modified) taken from 

Hinrichsen et al. (2016). 

Conclusions and future perspectives 

Interestingly, the driver “egg-size” may influence egg survival of different species in different 

directions. This was shown in our three case studies with cod, flounder and sprat. Egg size is 

influenced by stock structure. It can be influenced by spawning state e.g. reflected by batch 

number in season or by nutritional state in undetermined batch-spawners like sprat.  

In sprat, egg survival is reduced due to critical temperature conditions, which act as the main 

driver. Being a “large” egg early (April) in the spawning season might not be optimal for sprat; 

being “small” at that time however, increases thermal survival conditions in a still tolerable 

environment concerning oxygen. This size-pattern turns into the other direction in the 

continuation of the spawning season in May/June. During late spring and early summer, the 

temperature of the water column above the halocline increases and the larger eggs now 

experience the warmer conditions (Nissling et al., 2003; Petereit et al., 2009) and thus are 

outside of critical tolerance limits.  

For flounder spawning pelagic eggs, the key driver is likely adequate salinity (acting through 

appropriate water density characteristics) to sustain floating during the egg development in 

the water column. MBI events as observed late 2014 have the potential to improve conditions 

in terms of salinity and also oxygen. However, this effect may be only spatially or partly 

sufficient. Egg survival was significantly improved (to 100%!) in the Bornholm Basin and 

Gdansk Deep 2015 and the proportion of egg batches floating in the water column of the 

Gotland Basin at least doubled. Yet, oxygen threshold tolerance limits were not met. 

Therefore, effectively egg survival condition did not improve. Only the source of egg mortality 

changed from sedimentation to hypoxia.  

In cod, oxygen related egg survival is one of the key drivers determining egg abundances in 

different years. The new approach presented combines directly cod age structure with mean 

egg diameter and resulting mean density characteristics. This relationship is used as a 

feedback loop to model the number of effectively contributing females under known water 

density characteristics including the application of the well-accepted physiological tolerance 

limits for especially oxygen, temperature and salinity.  

Of course, more research is necessary to (re)assess and evaluate the relation between 

female size and egg size in the course of the batch cycle. This is of particular importance, 

due to the increasing evidence of a significant change in food composition of cod and 

proportion of rather young and smaller sized fish in recent years compared to the reference 

period in the end of 1990th , from which the basic experimental relationships have been taken 

(Vallin and Nissling, 2000). Compared to the case study on sprat, being a “small egg” seems 

not to be beneficial even early during the spawning season. Only for large eggs, abiotic 
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conditions seem to sustain continuously sufficient over the analyzed time series to survive 

and develop successfully to viable larvae. 

In conclusion, species specific drivers become evident which may also change during 

spawning season and year. This implies the need for a thorough and continuous effort to 

monitor changes in the egg density characteristics of the three ecologically and economically 

important species. This knowledge may aid to detect and understand peculiarities or 

changes in their stock structures. 
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 Appendix IX 

 

Cod larvae – populations across geographical scales – experiments 

Catriona Clemmesen, Felix Mittermayer, Martina Stiasny (GEOMAR, P1)  

 

 

Introduction 

Through the increased usage of fossil fuels and changed land use the concentration of 

atmospheric carbon dioxide has been steadily rising since the onset of the industrial 

revolution. A portion of this CO2 is dissolving into the oceans causing a decrease in pH, e.g. 

acidifying a habitat that covers 2/3 of this planet. This process has been coined “the other 

CO2 problem” or ocean acidification (OA)(Doney, Fabry, Feely, & Kleypas, 2009). 

 

Even though adult fish are able to tolerate CO2 concentrations of up to 16.000µatm 

(Ishimatsu, Hayashi, & Kikkawa, 2008), their early life stages have been shown to be more 

vulnerable as they often lack the regulatory acid-base mechanisms needed to negotiate a 

high CO2 environment (Falk-Petersen, 2005). The detrimental effects of OA on larval fish 

include changed sensory competence, behaviour, otoliths, development and tissue structure 

(Bignami, Enochs, Manzello, Sponaugle, & Cowen, 2013; Checkley et al., 2009; Dixson, 

Munday, & Jones, 2010; A. Y. Frommel et al., 2012; Andrea Y. Frommel et al., 2014; R. 

Maneja et al., 2013; Munday et al., 2009, 2012). However a number of studies have found no 

detrimental effects of OA on larval fish survival (Munday et al., 2009, 2015). This can partly 

be explained by these species natural environment or life history strategies and traits. In the 

case of cod (Gadus morhua) it remains uncertain if larvae from different populations are in 

the same way affected by acidification. One study has shown that in respect to hatching 

success, mortality, development and otolith size cod larvae from the Baltic appear to be 

robust to OA (Frommel et al 2013a) while others, namely Norwegian coastal cod have shown 

negative effects on growth patterns and development (Frommel et al. 2013b). These 

experiments were performed to establish how newly hatched, first feeding and developing 

larvae from different cod populations, namely Western Baltic and Barents Sea cope with end 

of the century ocean acidification levels. The aim is to derive as many variables, under 

comparable settings, from these experiments as possible; these include mortality, growth, 

behaviour, bone and tissue development, otoliths, lipid analysis, genetics and genomics.  

 

Three experiments were performed, one at the Sven Lovén Centre in Kristineberg, Sweden 

in 2013 and two at the Centre for Marine Aquaculture, Tromsø, Norway in 2014 and 2015. At 

the first location the larvae were fed natural plankton from the adjacent fjord, while in Tromsø 

in 2014 two variants of aquaculture feeding protocols were applied. In 2015 adult cod where 

kept under control and treatment for 20 weeks prior to spawning to investigate potential 

effects of parental acclimatization, e.g. transgenerational effects.  

 

Methods  

Cod from the Western Baltic population were caught in the Øresund (55°58’N, 12°38’E) in 

March 2013 and from the Barents Sea (approx. 70°15’N, 19°00’E) in March 2014. The fish 

from the Øresund were stripped spawned and their spawn was transported to the Sven 

Lovén Centre, Kristineberg, while the life fish from the Barents Sea were transferred to the 



90 
 

Centre for Marine Aquaculture, Tromsø and kept in large tanks under ambient lighting to 

initiate spawning and they were allowed to spawn naturally, the resulting eggs were collected 

from the tanks. Fish for the 2015 experiment were caught in November 2014 in the Barents 

Sea (approx. 70°15’N, 19°00’E) and transferred to the National Cod Breeding Centre, 

Tromsø. All fish were tagged using floy-tags to allow individual identification and were 

randomly distributed between the control (ambient 424.0 ± 5.2 uatm) and end-of-century CO2 

treatment (892.4 ± 22.2 uatm) into large rearing tanks. This broodstock was fed ad libitum 

with frozen capelin (Mallotus villosus) and the lighting regime was matched to the outside to 

stimulate the gonadal development and ripening. In March fish were strip spawned to create 

families and the resulting eggs were supplemented with natural spawn collected from the 

rearing tank.  

Water for the increased CO2 treatments were produced by controlling the pH values in 

header tanks with pH sensors connected to a pH control computer system (IKS Aquastar), 

correct values for the end-of-century treatment were achieved through an automatically 

opening and closing of a magnetic valve steered from the pH control unit when the water in 

the pH in the header tank was too low or too high. Opening of the magnetic valve resulted in 

a pulse of CO2 gas to be injected into the header tank, this in combination with the large 

volume of the header tank ensured a thorough mixing and equilibration of CO2 before the 

water would flow into the rearing tanks thereby assuring constant conditions in the rearing 

tanks, while ambient water passed the header tanks at the same flow rate but without the 

addition of CO2. Additionally every day the pH was checked manually in the rearing tanks 

with a separate pH probe (WTW pH/Cond 340i/3320). According to the Best Practices Guide 

(Riebesell, Fabry, Hansson, & Gattuso, 2010) carbon chemistry of the water, including DIC 

and alkalinity, were sampled at the beginning and the end of the experiment for the Western 

Baltic cod experiment and in weekly intervals  for the Barents Sea cod experiment.  

In all experiments the eggs were transferred and incubated in ambient pCO2 (426 ± 47 µatm 

CO2 Western Baltic and 503 ± 89 µatm CO2 Barents Sea 2014 and  452.5 ± 55.5 µatm CO2 

Barents Sea 2015) and at end-of-century pCO2 (1033 ± 255 µatm CO2 Western Baltic and 

1179 ± 87 CO2 µatm Barents Sea 2014 and 1017.6 ± 105.8 CO2 µatm Barents Sea 2015). 

Eggs and larvae from the Western Baltic were kept at 7 °C and under an ambient light 

regime that was matched to the outside sun rise and fall weekly while eggs and larvae from 

the Barents Sea (2014 and 2015) were kept at 6 °C which were later increased to 10 °C and 

under constant light, which reflects the ambient light levels. Once the majority of Barents Sea 

larvae had hatched they were redistributed at same densities to twelve 180 l larvae tanks, 

which were divided among the two CO2 treatments and in 2014 even under two fed 

treatments. After hatching larvae from the Western Baltic were fed with natural plankton from 

the Gullmars Fjord under green water conditions with Nannochloropsis thus recreating 

natural food levels, while larvae from the Barents Sea were initially given Nannochloropsis 

followed by Brachionus and later Artemia nauplii. The latter, being a standard aquaculture 

protocol, was applied in two intensities, one in which the fish were fed ad libitum and the 

other were the number of feedings per day was reduced to less than half. The aim of the 

latter feeding regimes was to investigate, whether increased feeding rates can mediate the 

adverse effects of ocean acidification. In 2015 only the latter feeding regime was used. All 

feeding regimes are listed in Table 1a and 1b. 
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Tab. 1: a) Feeding densities for the Western Baltic population and b) Barents Sea 

populations 

 

a Western Baltic Natural Plankton 

dph 
Nannochloropsis 

added 

First Daily 

Feeding (prey 

org ml-1 

feeding-1) 

Second Daily 

Feeding (prey 

org ml-1 

feeding-1) 

Third Daily 

Feeding (prey 

org ml-1 

feeding-1) 

1 yes 0 0 0 

2 yes 0 0 0 

3 yes 0 0 0 

4 yes 0 0 0 

5 yes 0.18 0 0 

6 yes 0 0 0 

7 yes 0.34 0 0 

8 yes 0.51 0 0 

9 yes 0.20 0.18 0 

10 yes 0.18 0.34 0 

11 yes 0.70 0 0 

12 yes 0.70 0.67 0 

13 yes 0.37 0.34 0 

14 yes 0.43 0.48 0 

15 yes 0.65 0.55 0.44 

16 yes 0.18 0.40 0 

17 yes 0.12 0.17 0.20 

18 yes 0.24 0.34 0 

19 yes 0.13 0.19 0 

20 yes 0.28 0.15 0.18 

21 yes 0.11 0.08 0 

22 yes 0.17 0.12 0.15 

23 yes 0.21 0.08 0 

24 yes 0.12 0 0 

25 yes 0.27 0.86 0 
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b) Aquaculture Low Food 

  

Aquaculture High Food 

  

DPH 

Greenwater/ 

Nannochloro

psis  

Rotatoria 

per Tank 

per 

Day(mill.) 

Number of 

daily 

feedings of 

Rotatoria 

Artemia 

per Tank 

per 

Day(mill.) 

Number 

of daily 

feedings 

of 

Artemia 

Greenwater/ 

Nannochloro

psis  

Rotatoria 

per Tank 

per 

Day(mill.) 

Number 

of daily 

feedings 

of 

Rotatoria 

Artemia 

per Tank 

per 

Day(mill.) 

Number 

of daily 

feedings 

of 

Artemia 

1 yes 4,27 7     yes 4,27 7     

2 yes 4,27 7     yes 4,27 7     

3 yes 4,27 7     yes 4,27 7     

4 yes 4,27 7     yes 4,27 7     

5 yes 7,35 7     yes 7,35 7     

6 yes 7,35 7     yes 7,35 7     

7 yes 7,35 7     yes 7,35 7     

8 yes 7,35 7     yes 7,35 7     

9 yes 7,35 7     yes 7,35 7     

10 yes 7,35 7     yes 7,35 7     

11 yes 7,35 7     yes 7,35 7     

12 yes 7,35 7     yes 7,35 7     

13   7,35 7       7,35 7     

14   3,15 3       7,35 7     

15   3,15 3       7,35 7     

16   3,15 3       7,35 7     

17   3,15 3       7,35 7     

18   3,15 3       7,35 7     

19   3,15 3       7,35 7     

20   3,15 3       7,35 7     

21   3,15 3       7,35 7     

22   3,15 3       7,35 7     

23   3,15 3       7,35 7     

24   3,15 3       7,35 7     

25   2,28 3 0,51 3   5,35 7 1,19 7 

26   2,28 3 0,51 3   5,35 7 1,19 7 

27   2,28 3 0,51 3   5,35 7 1,19 7 

28   2,28 3 0,51 3   5,35 7 1,19 7 

29   2,28 3 0,51 3   5,35 7 1,19 7 

30       0,53 1       0,80 3 

31       0,53 1       0,80 3 

32       0,53 1       0,80 3 

33       0,53 1       0,80 3 

34       0,53 1       0,80 3 

 



93 
 

Survival of larvae from the Western Baltic population was measured daily counting the dead 

larvae collected from each tank, in combination with the initial number of larvae per tank 

(~800) a daily mortality rate was back calculated. In case of the Barents Sea population 

mortality was calculated by density estimates, which were obtained by taking 5 samples of 

0.8 l volume using a pipe from the whole water column of rearing tank. The samples were 

taken after an even larvae distribution was achieved by increasing the aeration, subsequently 

the number of larvae in every subsample was counted and the larval density calculated for 

every rearing tank. These samplings were started at 8 days post hatching (dph) and then 

repeated every 4 to 5 days. The mean mortality coefficients were calculated after non-linear 

curve fitting of a negative exponential function for each replicate tank in both experiments. A 

comparison of the mortality rates between the treatments was done using a t-test (Western 

Baltic stock) and a two-way ANOVA (Barents Sea stock) after homogeneity of variance was 

achieved through appropriate data transformations.  

 

Samples for individual analysis of the larvae such as growth and development were obtained 

by randomly scoping out batches of larvae from the tanks after increasing the aeration to 

homogenize the distribution of larvae. These larvae were euthanized with MS-222 before 

being preserved individually and/or in batches in a variety of, for the different analysis, 

appropriate solutions and temperatures.  

Larvae for growth analysis were frozen in seawater at -80 °C by batches of ten from each 

replicate. Prior to photographing individually under a stereomicroscope all larvae were 

thawed on ice. Subsequently the standard length was measured using IMAGE-Tool. After the 

picture was taken larvae were freeze-dried for 16h and consequently weighed to the nearest 

µg. Through the whole process the larvae were stored in individually labelled tube on ice for 

short times and at -80 °C for any longer periods of time and for later down-stream analyses 

such as RNA/DNA quantification. The standard length of the larvae were measured from the 

tip of the lower jaw (where applicable) through the centre of the eye, along the vertebrae’s 

upper edge, ending at the vertebrae tip. 

 

Further details regarding sampling, methods and carbon chemistry analysis will be available 

in the individual publications. 

 

Results 

 

The experimentally estimated daily mortality rates were consistent among all stocks and 

feeding conditions, the end-of-century CO2 treatment resulted in an approximately doubling 

of mortality (Fig1). The daily mortality increased from 9.2 to 20.4% in the Western Baltic (T-

test, t=-3.749, df=2.41, p=0.024) and from 7 to 13% in the Barents Sea 2014 population 

(Two-way ANOVA F=8.434, df= 1, p=0.023). Food density had no detectable effect on the 

mortality rate of the Barents Sea population, neither as main effect nor in interaction with the 

acidification treatment.  
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Fig 1: Effect of increased CO2 on early life survival of Gadus morhua from a) Barents 

Sea cod b) Western Baltic cod.  Each symbol represents the value of one replicate tank.  

Lines depict the number of survivors according to the fitted negative exponential function.  

In 2014 the ocean acidification treatment resulted in longer (Fig. 2a) and heavier (Fig. 2b) 

larvae under the reduced feeding regime, these effects are only visible at and after 31 dph.  
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Fig 2; Effect of increased CO2 on early life growth of Gadus morhua from the Barents 

Sea in 2014 under different feeding regimes at days 20, 26 ,31 and 36 post hatching a) 

in standard length (mm) and b) in dry weight (µg). Boxplots represent median, 25 and 75 

percent quartiles and the total range. High and low present the two different feeding regimes 

used. 

The growth pattern in the 2015 experiment, in which larvae were kept under the low food 

regime, shows no effect of direct exposure of ocean acidification on the larvae (Fig. 3). 

However parental acclimatization had a significant effect on the growth of the larvae at day 

34 both in terms of standard length and dry weight while the direct exposure of eggs and 

larvae had no apparent effect (Tab. 2, Fig. 4) 
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Fig. 3: Effect of increased CO2 on early life growth of Gadus morhua from the Barents 

Sea in 2015 under different parental acclimatization (Present-day and end-of-century 

pCO2) at days 1, 13 and 34 post hatching a) in standard length (mm) and b) in dry 

weight (µg). Boxplots represent median, 25 and 75 percent quartiles and the total range. 
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Tab. 2: Statistical summary Two-Way ANOVA a) standard length and b) dry weight 

a) Two-way ANOVA Standard Length 

 
 

DF F p-value 

Parental Treatment 1 7.165 0.0132 

Larvae Treatment 1 0.094 0.7624 

Parental x Larvae Treatment 1 0.046 0.6442 

Residuals 24     

    

    b) Two-way ANOVA sqrt Dry Weight 

 
 

DF F p-value 

Parental Treatment 1 5.446 0.0283 

Larvae Treatment 1 0.028 0.08681 

Parental x Larvae Treatment 1 0.921 0.3469 

Residuals 24     

 

Additional analyses and statistics will be provided in the respective publication.  

 

Conclusions and future perspectives 

The experiments performed for this study clearly show that larvae of Western Baltic and 

coastal Barents Sea cod in 2014 are impacted by near future levels of ocean acidification. 

While some results are easy and directly to interpret, namely the massively increased daily 

mortalities, other variables such as the growth patterns need to be analyzed in more detail to 

understand the underlying physiological and genomic mechanisms as well as their 

implications, may they be ecological or socio-economic.  

Our findings additionally suggest that even at ad libitum feeding, e.g. a richer energy budget 

that would allow for more efficient acid-base regulation, cod larvae cannot mediate the 

adverse effects of ocean acidification. This strengthens the hypothesis that larvae will be 

negatively affected by ocean acidification independent from food availability in a patchy or 

match-mismatch environment. However this apparently does not hold true for growth 

patterns. At high fed availability, larvae in ambient and end-of-century treatment show no 

apparent differences in standard length and dry weight by the end of the experiment (36 

dph). 

Additionally, our experiments suggest that offspring of brood stock from the Barents Sea that 

has been exposed to end-of-century pCO2 levels grow longer and heavier in both ambient 

and end-of-century larvae treatment by day 34 past hatching compared to offspring from 

brood stock kept at ambient pCO2 levels.  
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Fig. 4: Effects of parental and larval exposure to increased pCO2 on Gadus morhua 

offspring a) standard length (mm) and b) dry weight (µg) at 34 days post hatch.  

Boxplots represent mean, SEM and range. 

Further our results highlight the importance of investigating several responses to changes in 

the physiological environment in the same experiment, as in our case mortality and growth. 

Looked at separately the growth patterns of the high CO2 treatment could be interpreted as 

ocean acidification having a positive effect on cod larvae through increased growth; yet if one 

includes the detrimental increase in mortality it will most likely have several effects on the 

population dynamics of both cod populations. Once the remaining samples for growth 

analysis are measured the changed growth patterns and their causes will be examined by 

their lipid content, as it has been show in earlier experiments that larvae under high CO2 

treatments deposit lipid vacuoles in certain organs, which, at a later point, lead the increased 
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mortality (Frommel et al., 2012). Additionally samples for histology and bone ossification are 

currently being processed to address the question, whether the changed growth patterns are 

only caused by increased growth and/or by increased developmental speed.  

In the near future we plan to deepen our investigation in the growth, condition and 

developmental patterns between the different populations and treatments by analyzing the 

RNA/DNA ratio of larvae at critical stages in their development. However, the main focus will 

be put on the transcriptomic analysis of the 2015 experiment to evaluate if the observed 

parental effects in growth are reflected in changed gene expression patterns. In which case it 

can be assumed that some epigenetic mechanisms (Metzger & Schulte, 2016) are involved 

e.g. a case for transgenerational adaptation. Additionally we have developed and prepared 

as microsatellite toolkit to perform a parentage analysis with the aim of addressing family 

specific mortality, e.g. to estimate if offspring from certain families have higher or lower than 

average mortality rates and thus suggesting that not all parts of these populations react 

similarly to changes in their habitat’s carbon chemistry. Additionally the results from mortality, 

growth and respiration will be included in recruitment, socio-economic and individual-based-

models to address, the often called for (Lam, Cheung, & Sumaila, 2014; MacNeil et al., 2010) 

ecological and economic implications of the effects of ocean acidification on different cod 

populations. 
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