26 research outputs found

    The Impact of Step Reduction on Muscle Health in Aging: Protein and Exercise as Countermeasures

    Get PDF
    Declines in strength and muscle function with age—sarcopenia—contribute to a variety of negative outcomes including an increased risk of: falls, fractures, hospitalization, and reduced mobility in older persons. Population-based estimates of the loss of muscle after age 60 show a loss of ~1% per year while strength loss is more rapid at ~3% per year. These rates are not, however, linear as periodic bouts of reduced physical activity and muscle disuse transiently accelerate loss of muscle and declines in muscle strength and power. Episodic complete muscle disuse can be due to sickness-related bed rest or local muscle disuse as a result of limb immobilization/surgery. Alternatively, relative muscle disuse occurs during inactivity due to illness and the associated convalescence resulting in marked reductions in daily steps, often referred to as step reduction (SR). While it is a “milder” form of disuse, it can have a similar adverse impact on skeletal muscle health. The physiological consequences of even short-term inactivity, modeled by SR, show losses in muscle mass and strength, as well as impaired insulin sensitivity and an increase in systemic inflammation. Though seemingly benign in comparison to bed rest, periodic inactivity likely occurs, we posit, more frequently with advancing age due to illness, declining mental health and declining mobility. Given that recovery from inactivity in older adults is slow or possibly incomplete we hypothesize that accumulated periods of inactivity contribute to sarcopenia. Periodic activity, even in small quantities, and protein supplementation may serve as effective strategies to offset the loss of muscle mass with aging, specifically during periods of inactivity. The aim of this review is to examine the recent literature encompassing SR, as a model of inactivity, and to explore the capacity of nutrition and exercise interventions to mitigate adverse physiological changes as a result of SR

    Potato Protein Isolate Stimulates Muscle Protein Synthesis at Rest and with Resistance Exercise in Young Women

    Get PDF
    Skeletal muscle myofibrillar protein synthesis (MPS) increases in response to protein feeding and to resistance exercise (RE), where each stimuli acts synergistically when combined. The efficacy of plant proteins such as potato protein (PP) isolate to stimulate MPS is unknown. We aimed to determine the effects of PP ingestion on daily MPS with and without RE in healthy women. In a single blind, parallel-group design, 24 young women (21 ± 3 years, n = 12/group) consumed a weight-maintaining baseline diet containing 0.8 g/kg/d of protein before being randomized to consume either 25 g of PP twice daily (1.6 g/kg/d total protein) or a control diet (CON) (0.8 g/kg/d total protein) for 2 wks. Unilateral RE (~30% of maximal strength to failure) was performed thrice weekly with the opposite limb serving as a non-exercised control (Rest). MPS was measured by deuterated water ingestion at baseline, following supplementation (Rest), and following supplementation + RE (Exercise). Ingestion of PP stimulated MPS by 0.14 ± 0.09 %/d at Rest, and by 0.32 ± 0.14 %/d in the Exercise limb. MPS was significantly elevated by 0.20 ± 0.11 %/d in the Exercise limb in CON (p = 0.008). Consuming PP to increase protein intake to levels twice the recommended dietary allowance for protein augmented rates of MPS. Performance of RE stimulated MPS regardless of protein intake. PP is a high-quality, plant-based protein supplement that augments MPS at rest and following RE in healthy young women

    Differential localization and anabolic responsiveness of mTOR complexes in human skeletal muscle in response to feeding and exercise

    Get PDF
    Mechanistic target of rapamycin (mTOR) resides as two complexes within skeletal muscle. mTOR complex 1 (mTORC1-Raptor positive) regulates skeletal muscle growth, whereas mTORC2 (Rictor positive) regulates insulin sensitivity. To examine the regulation of these complexes in human skeletal muscle, we utilised immunohistochemical analysis to study the localisation of mTOR complexes prior to and following protein-carbohydrate feeding (FED) and resistance exercise plus protein-carbohydrate feeding (EXFED) in unilateral exercise model. In basal samples, mTOR and the lysosomal marker LAMP2 were highly co-localized and remained so throughout. In the FED and EXFED states, mTOR/LAMP2 complexes were redistributed to the cell periphery (WGA positive staining) (time effect; p=.025), with 39\% (FED) and 26\% (EXFED) increases in mTOR/WGA association observed 1h post-feeding/exercise. mTOR/WGA colocalisation continued to increase in EXFED at 3h (48\% above baseline) whereas colocalisation decreased in FED (21\% above baseline). A significant effect of condition (p=.05) was noted suggesting mTOR/WGA co-localization was greater during EXFED. This pattern was replicated in Raptor/WGA association, where a significant difference between EXFED and FED was noted at 3h post-exercise/feeding (p=.014). Rictor/WGA colocalization remained unaltered throughout the trial. Alterations in mTORC1 cellular location coincided with elevated S6K1 kinase activity, which rose to a greater extent in EXFED compared to FED at 1h post-exercise/feeding (p<.001), and only remained elevated in EXFED at the 3h time point (p=.037). Collectively these data suggest that mTORC1 redistribution within the cell is a fundamental response to resistance exercise and feeding, whereas mTORC2 is predominantly situated at the sarcolemma and does not alter localisation

    In-season nutrition strategies and recovery modalities to enhance recovery for basketball players: a narrative review

    Get PDF
    Basketball players face multiple challenges to in-season recovery. The purpose of this article is to review the literature on recovery modalities and nutritional strategies for basketball players and practical applications that can be incorporated throughout the season at various levels of competition. Sleep, protein, carbohydrate, and fluids should be the foundational components emphasized throughout the season for home and away games to promote recovery. Travel, whether by air or bus, poses nutritional and sleep challenges, therefore teams should be strategic about packing snacks and fluid options while on the road. Practitioners should also plan for meals at hotels and during air travel for their players. Basketball players should aim for a minimum of 8 h of sleep per night and be encouraged to get extra sleep during congested schedules since back-to back games, high workloads, and travel may negatively influence night-time sleep. Regular sleep monitoring, education, and feedback may aid in optimizing sleep in basketball players. In addition, incorporating consistent training times may be beneficial to reduce bed and wake time variability. Hydrotherapy, compression garments, and massage may also provide an effective recovery modality to incorporate post-competition. Future research, however, is warranted to understand the influence these modalities have on enhancing recovery in basketball players. Overall, a strategic well-rounded approach, encompassing both nutrition and recovery modality strategies, should be carefully considered and implemented with teams to support basketball players’ recovery for training and competition throughout the season

    An intron variant of the GLI family zinc finger 3 (GLI3) gene differentiates resistance training-induced muscle fiber hypertrophy in younger men

    Get PDF
    We examined the association between genotype and resistance training-induced changes (12 wk) in dual x-ray energy absorptiometry (DXA)-derived lean soft tissue mass (LSTM) as well as muscle fiber cross-sectional area (fCSA; vastus lateralis; n = 109; age = 22 ± 2 y, BMI = 24.7 ± 3.1 kg/m2). Over 315 000 genetic polymorphisms were interrogated from muscle using DNA microarrays. First, a targeted investigation was performed where single nucleotide polymorphisms (SNP) identified from a systematic literature review were related to changes in LSTM and fCSA. Next, genome-wide association (GWA) studies were performed to reveal associations between novel SNP targets with pre- to post-training change scores in mean fCSA and LSTM. Our targeted investigation revealed no genotype-by-time interactions for 12 common polymorphisms regarding the change in mean fCSA or change in LSTM. Our first GWA study indicated no SNP were associated with the change in LSTM. However, the second GWA study indicated two SNP exceeded the significance level with the change in mean fCSA (P = 6.9 × 10–7 for rs4675569, 1.7 × 10–6 for rs10263647). While the former target is not annotated (chr2:205936846 (GRCh38.p12)), the latter target (chr7:41971865 (GRCh38.p12)) is an intron variant of the GLI Family Zinc Finger 3 (GLI3) gene. Follow-up analyses indicated fCSA increases were greater in the T/C and C/C GLI3 genotypes than the T/T GLI3 genotype (P \u3c.05). Data from the Auburn cohort also revealed participants with the T/C and C/C genotypes exhibited increases in satellite cell number with training (P \u3c.05), whereas T/T participants did not. Additionally, those with the T/C and C/C genotypes achieved myonuclear addition in response to training (P \u3c.05), whereas the T/T participants did not. In summary, this is the first GWA study to examine how polymorphisms associate with the change in hypertrophy measures following resistance training. Future studies are needed to determine if the GLI3 variant differentiates hypertrophic responses to resistance training given the potential link between this gene and satellite cell physiology

    Molecular Transducers of Human Skeletal Muscle Remodeling under Different Loading States

    Get PDF
    Loading of skeletal muscle changes the tissue phenotype reflecting altered metabolic and functional demands. In humans, heterogeneous adaptation to loading complicates the identification of the underpinning molecular regulators. A within-person differential loading and analysis strategy reduces heterogeneity for changes in muscle mass by ∼40% and uses a genome-wide transcriptome method that models each mRNA from coding exons and 3′ and 5′ untranslated regions (UTRs). Our strategy detects ∼3–4 times more regulated genes than similarly sized studies, including substantial UTR-selective regulation undetected by other methods. We discover a core of 141 genes correlated to muscle growth, which we validate from newly analyzed independent samples (n = 100). Further validating these identified genes via RNAi in primary muscle cells, we demonstrate that members of the core genes were regulators of protein synthesis. Using proteome-constrained networks and pathway analysis reveals notable relationships with the molecular characteristics of human muscle aging and insulin sensitivity, as well as potential drug therapies

    Gap-filling eddy covariance methane fluxes : Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands

    Get PDF
    Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting halfhourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET).Peer reviewe

    Eat like an athlete : Insights of sports nutrition science to support active aging in healthy older adults

    Get PDF
    Skeletal muscle mass losses with age are associated with negative health consequences, including an increased risk of developing metabolic disease and the loss of independence. Athletes adopt numerous nutritional strategies to maximize the benefits of exercise training and enhance recovery in pursuit of improving skeletal muscle quality, mass, or function. Importantly, many of the principles applied to enhance skeletal muscle health in athletes may be applicable to support active aging and prevent sarcopenia in the healthy (non-clinical) aging population. Here, we discuss the anabolic properties of protein supplementation in addition to ingredients that may enhance the anabolic effects of protein (e.g. omega 3 s, creatine, inorganic nitrate) in older persons. We conclude that nutritional strategies used in pursuit of performance enhancement in athletes are often applicable to improve skeletal muscle health in the healthy older population when implemented as part of a healthy active lifestyle. Further research is required to elucidate the mechanisms by which these nutrients may induce favourable changes in skeletal muscle and to determine the appropriate dosing and timing of nutrient intakes to support active aging

    ASSESSING THE MECHANISTIC TARGET OF RAPAMYCIN COMPLEX-1 PATHWAY IN RESPONSE TO RESISTANCE EXERCISE AND FEEDING IN HUMAN SKELETAL MUSCLE by MULTIPLEX ASSAY

    No full text
    ABSTRACT Background: The mechanistic target of rapamycin complex-1 (mTORC-1) is a key nutrient and contraction-sensitive protein that regulates a pathway leading to skeletal muscle growth. Utilizing a multiplex assay, we aimed to examine the phosphorylation status of key mTORC-1-related signalling molecules in response to protein feeding and resistance exercise. Methods: Eight healthy men (22.5 ± 3.1 yr, 80 ± 9 kg, 1-repetition maximum [1RM] leg extension: 87 ± 5 kg) performed 4 sets of unilateral leg extensions until volitional failure. Immediately following the final set, all participants consumed a protein-enriched beverage. A single skeletal muscle biopsy was obtained from the vastus lateralis before (Pre) with further bilateral biopsies at 1 h (1 h FEDEX and 1 h FED) and 3 h (3 h FEDEX and 3 h FED) post drink ingestion Results: Phosphorylated Akt Ser473 was significantly elevated from Pre at 1 h FEDEX. Phosphorylated p70S6K1 Thr412 was significantly increased above Pre at 1 h FEDEX and 1 h FED and was still significantly elevated at 3 h FEDEX but not 3 h FED. Phosphorylated rpS6 Ser235/236 was also significantly increased above Pre at 1 h FEDEX and 1 h FED with 1 h FEDEX greater than 1 h FED. Conclusion: Our data highlight the utility of a multiplex assay to assess anabolic signaling molecules in response to protein feeding and resistance exercise in humans. Importantly, these changes are comparable to those as previously reported using standard immunoblotting and protein activity assays.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore