138 research outputs found

    Understanding the T cell immune response in SARS coronavirus infection

    Get PDF
    10.1038/emi.2012.26Emerging Microbes and Infections1Article number e23, 6 page

    Enrichment of the exocytosis protein STX4 in skeletal muscle remediates peripheral insulin resistance and alters mitochondrial dynamics via Drp1

    Get PDF
    Mitochondrial dysfunction is implicated in skeletal muscle insulin resistance. Syntaxin 4 (STX4) levels are reduced in human diabetic skeletal muscle, and global transgenic enrichment of STX4 expression improves insulin sensitivity in mice. Here, we show that transgenic skeletal muscle-specific STX4 enrichment (skmSTX4tg) in mice reverses established insulin resistance and improves mitochondrial function in the context of diabetogenic stress. Specifically, skmSTX4tg reversed insulin resistance caused by high-fat diet (HFD) without altering body weight or food consumption. Electron microscopy of wild-type mouse muscle revealed STX4 localisation at or proximal to the mitochondrial membrane. STX4 enrichment prevented HFD-induced mitochondrial fragmentation and dysfunction through a mechanism involving STX4-Drp1 interaction and elevated AMPK-mediated phosphorylation at Drp1 S637, which favors fusion. Our findings challenge the dogma that STX4 acts solely at the plasma membrane, revealing that STX4 localises at/proximal to and regulates the function of mitochondria in muscle. These results establish skeletal muscle STX4 enrichment as a candidate therapeutic strategy to reverse peripheral insulin resistance

    Does Stellar Feedback Create HI Holes? An HST/VLA Study of Holmberg II

    Full text link
    We use deep HST/ACS F555W and F814W photometry of resolved stars in the M81 Group dwarf irregular galaxy Ho II to study the hypothesis that the holes identified in the neutral ISM (HI) are created by stellar feedback. From the deep photometry, we construct color-magnitude diagrams (CMDs) and measure the star formation histories (SFHs) for stars contained in HI holes from two independent holes catalogs, as well as select control fields, i.e., similar sized regions that span a range of HI column densities. Converting the recent SFHs into stellar feedback energies, we find that enough energy has been generated to have created all holes. However, the required energy is not always produced over a time scale that is less than the estimated kinematic age of the hole. The combination of the CMDs, recent SFHs, and locations of young stars shows that the stellar populations inside HI holes are not coherent, single-aged, stellar clusters, as previously suggested, but rather multi-age populations distributed across each hole. From a comparison of the modeled and observed integrated magnitudes, and the locations and energetics of stars inside of HI holes, we propose a potential new model: a viable mechanism for creating the observed HI holes in Ho II is stellar feedback from multiple generations of SF spread out over tens or hundreds of Myr, and thus, the concept of an age for an HI hole is intrinsically ambiguous. We further find that \halpha and 24 micron emission, tracers of the most recent star formation, do not correlate well with the positions of the HI holes. However, UV emission, which traces star formation over roughly the last 100 Myr, shows a much better correlation with the locations of the HI holes.Comment: Accepted for Publication in The Astrophysical Journal; 28 Pages, 31 Figures, a version of this paper with full resolution figures is available at http://homepages.spa.umn.edu/~dweisz/ho_ii_weisz.pd

    The M81 Group Dwarf Irregular Galaxy DDO 165. II. Connecting Recent Star Formation with ISM Structures and Kinematics

    Full text link
    We compare the stellar populations and complex neutral gas dynamics of the M81 group dIrr galaxy DDO 165 using data from the HST and the VLA. Paper I identified two kinematically distinct HI components, multiple localized high velocity gas features, and eight HI holes and shells (the largest of which spans ~2.2x1.1 kpc). Using the spatial and temporal information from the stellar populations in DDO 165, we compare the patterns of star formation over the past 500 Myr with the HI dynamics. We extract localized star formation histories within 6 of the 8 HI holes identified in Paper I, as well as 23 other regions that sample a range of stellar densities and neutral gas properties. From population synthesis modeling, we derive the energy outputs (from stellar winds and supernovae) of the stellar populations within these regions over the last 100 Myr, and compare with refined estimates of the energies required to create the HI holes. In all cases, we find that "feedback" is energetically capable of creating the observed structures in the ISM. Numerous regions with significant energy inputs from feedback lack coherent HI structures but show prominent localized high velocity gas features; this feedback signature is a natural product of temporally and spatially distributed star formation. In DDO 165, the extended period of heightened star formation activity (lasting more than 1 Gyr) is energetically capable of creating the observed holes and high velocity gas features in the neutral ISM.Comment: The Astrophysical Journal, in press. Full-resolution version available on request from the first autho

    Differential expression of glucose transporters and hexokinases in prostate cancer with a neuroendocrine gene signature: A mechanistic perspective for 18 F-FDG imaging of PSMA-suppressed tumors

    Get PDF
    Although the incidence of de novo neuroendocrine prostate cancer (PC) is rare, recent data suggest that low expression of prostatespecific membrane antigen (PSMA) is associated with a spectrum of neuroendocrine hallmarks and androgen receptor (AR) suppression in PC. Previous clinical reports indicate that PCs with a phenotype similar to neuroendocrine tumors can be more amenable to imaging by 18F-FDG than by PSMA-targeting radioligands. In this study, we evaluated the association between neuroendocrine gene signature and 18F-FDG uptake-associated genes including glucose transporters (GLUTs) and hexokinases, with the goal of providing a genomic signature to explain the reported 18F-FDG avidity of PSMA suppressed tumors. Methods: Data-mining approaches, cell lines, and patient-derived xenograft models were used to study the levels of 14 members of the SLC2A family (encoding GLUT proteins), 4 members of the hexokinase family (genes HK1-HK3 and GCK), and PSMA (FOLH1 gene) after AR inhibition and in correlation with neuroendocrine hallmarks. Also, we characterize a neuroendocrine-like PC (NELPC) subset among a cohort of primary and metastatic PC samples with no neuroendocrine histopathology. We measured glucose uptake in a neuroendocrine-induced in vitro model and a zebrafish model by nonradioactive imaging of glucose uptake using a fluorescent glucose bioprobe, GB2-Cy3. Results: This work demonstrated that a neuroendocrine gene signature associates with differential expression of genes encoding GLUT and hexokinase proteins. In NELPC, elevated expression of GCK (encoding glucokinase protein) and decreased expression of SLC2A12 correlated with earlier biochemical recurrence. In tumors treated with AR inhibitors, high expression of GCK and low expression of SLC2A12 correlated with neuroendocrine histopathology and PSMA gene suppression. GLUT12 suppression and upregulation of glucokinase were observed in neuroendocrine- induced PC cell lines and patient-derived xenograft models. A higher glucose uptake was confirmed in low-PSMA tumors using a GB2-Cy3 probe in a zebrafish model. Conclusion: A neuroendocrine gene signature in neuroendocrine PC and NELPC associates with a distinct transcriptional profile of GLUTs and hexokinases. PSMA suppression correlates with GLUT12 suppression and glucokinase upregulation. Alteration of 18F-FDG uptake-associated genes correlated positively with higher glucose uptake in AR- and PSMA-suppressed tumors. Zebrafish xenograft tumor models are an accurate and efficient preclinical method for monitoring nonradioactive glucose uptake

    A community-based lifestyle and weight loss intervention promoting a Mediterranean-style diet pattern evaluated in the stroke belt of North Carolina: the Heart Healthy Lenoir Project

    Get PDF
    Abstract Background Because residents of the southeastern United States experience disproportionally high rates of cardiovascular disease (CVD), it is important to develop effective lifestyle interventions for this population. Methods The primary objective was to develop and evaluate a dietary, physical activity (PA) and weight loss intervention for residents of the southeastern US. The intervention, given in eastern North Carolina, was evaluated in a 2 year prospective cohort study with an embedded randomized controlled trial (RCT) of a weight loss maintenance intervention. The intervention included: Phase I (months 1–6), individually-tailored intervention promoting a Mediterranean-style dietary pattern and increased walking; Phase II (months 7–12), option of a 16-week weight loss intervention for those with BMI ≥ 25 kg/m2 offered in 2 formats (16 weekly group sessions or 5 group sessions and 10 phone calls) or a lifestyle maintenance intervention; and Phase III (months 13–24), weight loss maintenance RCT for those losing ≥ 8 lb with all other participants receiving a lifestyle maintenance intervention. Change in diet and PA behaviors, CVD risk factors, and weight were assessed at 6, 12, and 24 month follow-up. Results Baseline characteristics (N = 339) were: 260 (77 %) females, 219 (65 %) African Americans, mean age 56 years, and mean body mass index 36 kg/m2. In Phase I, among 251 (74 %) that returned for 6 month follow-up, there were substantial improvements in diet score (4.3 units [95 % CI 3.7 to 5.0]), walking (64 min/week [19 to 109]), and systolic blood pressure (−6.4 mmHg [−8.7 to −4.1]) that were generally maintained through 24 month follow-up. In Phase II, 138 (57 group only, 81 group/phone) chose the weight loss intervention and at 12 months, weight change was: −3.1 kg (−4.9 to −1.3) for group (N = 50) and −2.1 kg (−3.2 to −1.0) for group/phone combination (N = 75). In Phase III, 27 participants took part in the RCT. At 24 months, weight loss was −2.1 kg (−4.3 to 0.0) for group (N = 51) and −1.1 kg (−2.7 to 0.4) for combination (N = 72). Outcomes for African American and whites were similar. Conclusions The intervention yielded substantial improvement in diet, PA, and blood pressure, but weight loss was modest. Trial registration clinicaltrials.gov Identifier: NCT0143348

    A Scalable System for Production of Functional Pancreatic Progenitors from Human Embryonic Stem Cells

    Get PDF
    Development of a human embryonic stem cell (hESC)-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50–100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ)-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry
    corecore