1,443 research outputs found
CHAOS DYNAMICAL ANALYSIS OF EEG DATA(Session I : Cross-Disciplinary Physics, The 1st Tohwa University International Meeting on Statistical Physics Theories, Experiments and Computer Simulations)
この論文は国立情報学研究所の電子図書館事業により電子化されました
Mechanical Properties of Candidate Materials for the Large-Scale Superconducting Magnets at Cryogenic Temperatures
Pattern formation of reaction-diffusion system having self-determined flow in the amoeboid organism of Physarum plasmodium
The amoeboid organism, the plasmodium of Physarum polycephalum, behaves on
the basis of spatio-temporal pattern formation by local
contraction-oscillators. This biological system can be regarded as a
reaction-diffusion system which has spatial interaction by active flow of
protoplasmic sol in the cell. Paying attention to the physiological evidence
that the flow is determined by contraction pattern in the plasmodium, a
reaction-diffusion system having self-determined flow arises. Such a coupling
of reaction-diffusion-advection is a characteristic of the biological system,
and is expected to relate with control mechanism of amoeboid behaviours. Hence,
we have studied effects of the self-determined flow on pattern formation of
simple reaction-diffusion systems. By weakly nonlinear analysis near a trivial
solution, the envelope dynamics follows the complex Ginzburg-Landau type
equation just after bifurcation occurs at finite wave number. The flow term
affects the nonlinear term of the equation through the critical wave number
squared. Contrary to this, wave number isn't explicitly effective with lack of
flow or constant flow. Thus, spatial size of pattern is especially important
for regulating pattern formation in the plasmodium. On the other hand, the flow
term is negligible in the vicinity of bifurcation at infinitely small wave
number, and therefore the pattern formation by simple reaction-diffusion will
also hold. A physiological role of pattern formation as above is discussed.Comment: REVTeX, one column, 7 pages, no figur
Comparative gene expression analysis of susceptible and resistant near-isogenic lines in common wheat infected by Puccinia triticina
Gene expression after leaf rust infection was compared in near-isogenic wheat lines differing in the Lr10 leaf rust resistance gene. RNA from susceptible and resistant plants was used for cDNA library construction. In total, 55 008 ESTs were sequenced from the two libraries, then combined and assembled into 14 268 unigenes for further analysis. Of these ESTs, 89% encoded proteins similar to (E value of < or =10(-5)) characterized or annotated proteins from the NCBI non-redundant database representing diverse molecular functions, cellular localization and biological processes based on gene ontology classification. Further, the unigenes were classified into susceptible and resistant classes based on the EST members assembled from the respective libraries. Several genes from the resistant sample (14-3-3 protein, wali5 protein, actin-depolymerization factor and ADP-ribosylation factor) and the susceptible sample (brown plant hopper resistance protein, caffeic acid O-methyltransferase, pathogenesis-related protein and senescence-associated protein) were selected and their differential expression in the resistant and susceptible samples collected at different time points after leaf rust infection was confirmed by RT-PCR analysis. The molecular pathogenicity of leaf rust in wheat was studied and the EST data generated made a foundation for future studies
Origin and Detectability of coorbital planets from radial velocity data
We analyze the possibilities of detection of hypothetical exoplanets in
coorbital motion from synthetic radial velocity (RV) signals, taking into
account different types of stable planar configurations, orbital eccentricities
and mass ratios. For each nominal solution corresponding to small-amplitude
oscillations around the periodic solution, we generate a series of synthetic RV
curves mimicking the stellar motion around the barycenter of the system. We
then fit the data sets obtained assuming three possible different orbital
architectures: (a) two planets in coorbital motion, (b) two planets in a 2/1
mean-motion resonance, and (c) a single planet. We compare the resulting
residuals and the estimated orbital parameters.
For synthetic data sets covering only a few orbital periods, we find that the
discrete radial velocity signal generated by a coorbital configuration could be
easily confused with other configurations/systems, and in many cases the best
orbital fit corresponds to either a single planet or two bodies in a 2/1
resonance. However, most of the incorrect identifications are associated to
dynamically unstable solutions.
We also compare the orbital parameters obtained with two different fitting
strategies: a simultaneous fit of two planets and a nested multi-Keplerian
model. We find that the nested models can yield incorrect orbital
configurations (sometimes close to fictitious mean-motion resonances) that are
nevertheless dynamically stable and with orbital eccentricities lower than the
correct nominal solutions.
Finally, we discuss plausible mechanisms for the formation of coorbital
configurations, by the interaction between two giant planets and an inner
cavity in the gas disk. For equal mass planets, both Lagrangian and
anti-Lagrangian configurations can be obtained from same initial condition
depending on final time of integration.Comment: 14 pages, 16 figures.2012. MNRAS, 421, 35
Quasi-fission reactions as a probe of nuclear viscosity
Fission fragment mass and angular distributions were measured from the
^{64}Ni+^{197}Au reaction at 418 MeV and 383 MeV incident energy. A detailed
data analysis was performed, using the one-body dissipation theory implemented
in the code HICOL. The effect of the window and the wall friction on the
experimental observables was investigated. Friction stronger than one-body was
also considered. The mass and angular distributions were consistent with
one-body dissipation. An evaporation code DIFHEAT coupled to HICOL was
developed in order to predict reaction time scales required to describe
available data on pre-scission neutron multiplicities. The multiplicity data
were again consistent with one-body dissipation. The cross-sections for touch,
capture and quasi-fission were also obtained.Comment: 25 pages REVTeX, 3 tables, 13 figures, submitted to Phys. Rev
An educated search for transiting habitable planets: (Research Note) Targetting M dwarfs with known transiting planets
Because the planets of a system form in a flattened disk, they are expected to share similar orbital inclinations at the end of their formation. The high-precision photometric monitoring of stars known to host a transiting planet could thus reveal the transits of one or more other planets. We investigate here the potential of this approach for the M dwarf GJ 1214 that hosts a transiting super-Earth. For this system, we infer the transit probabilities as a function of orbital periods. Using Monte-Carlo simulations we address both the cases for fully coplanar and for non-coplanar orbits, with three different choices of inclinations distribution for the non-coplanar case. GJ 1214 reveals to be a very promising target for the considered approach. Because of its small size, a ground-based photometric monitoring of this star could detect the transit of a habitable planet as small as the Earth, while a space-based monitoring could detect any transiting habitable planet down to the size of Mars. The mass measurement of such a small planet would be out of reach for current facilities, but we emphasize that a planet mass would not be needed to confirm the planetary nature of the transiting object. Furthermore, the radius measurement combined with theoretical arguments would help us to constrain the structure of the planet
Intraply fracture of fiber-reinforced composites: microscopic mechanisms and modeling
The fracture behavior parallel to the fibers of an E-glass/epoxy unidirectional laminate was studied by
means of three-point tests on notched beams. Selected tests were carried out within a scanning electron
microscope to ascertain the damage and fracture micromechanisms upon loading. The mechanical behavior
of the notched beam was simulated within the framework of the embedded cell model, in which the
actual composite microstructure was resolved in front of the notch tip. In addition, matrix and interface
properties were independently measured in situ using a nanoindentor. The numerical simulations very
accurately predicted the macroscopic response of the composite as well as the damage development
and crack growth in front of the notch tip, demonstrating the ability of the embedded cell approach to
simulate the fracture behavior of heterogeneous materials. Finally, this methodology was exploited to
ascertain the influence of matrix and interface properties on the intraply toughness
Saving Super-Earths:Interplay between Pebble Accretion and Type I Migration
Overcoming type I migration and preventing low-mass planets from spiralling into the central star is a long-studied topic. It is well known that outward migration is possible in viscously heated disks relatively close to the central star because the entropy gradient can be sufficiently steep for the positive corotation torque to overcome the negative Lindblad torque. Yet efficiently trapping planets in this region remains elusive. Here we study disk conditions that yield outward migration for low-mass planets under specific planet migration prescriptions. In a steady-state disk model with a constant α-viscosity, outward migration is only possible when the negative temperature gradient exceeds ∼0.87. We derive an implicit relation for the highest mass at which outward migration is possible as a function of viscosity and disk scale height. We apply these criteria, using a simple power-law disk model, to planets that have reached their pebble isolation mass after an episode of rapid accretion. It is possible to trap planets with the pebble isolation mass farther than the inner edge of the disk provided that α crit 0.004 for disks older than 1 Myr. In very young disks, the high temperature causes the planets to grow to masses exceeding the maximum for outward migration. As the disk evolves, these more massive planets often reach the central star, generally only toward the end of the disk lifetime. Saving super-Earths is therefore a delicate interplay between disk viscosity, the opacity profile, and the temperature gradient in the viscously heated inner disk
- …
