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ABSTRACT

Because the planets of a system form in a flattened disk, they are expected to share similar orbital inclinations at the endof their
formation. The high-precision photometric monitoring of stars known to host a transiting planet could thus reveal the transits of one
or more other planets. We investigate here the potential of this approach for the M dwarf GJ 1214 that hosts a transiting super-Earth.
For this system, we infer the transit probabilities as a function of orbital periods. Using Monte-Carlo simulations we address both the
cases for fully coplanar and for non-coplanar orbits, with three different choices of inclinations distribution for the non-coplanar case.
GJ 1214 reveals to be a very promising target for the considered approach. Because of its small size, a ground-based photometric
monitoring of this star could detect the transit of a habitable planet as small as the Earth, while a space-based monitoring could detect
any transiting habitable planet down to the size of Mars. Themass measurement of such a small planet would be out of reach for
current facilities, but we emphasize that a planet mass would not be needed to confirm the planetary nature of the transiting object.
Furthermore, the radius measurement combined with theoretical arguments would help us to constrain the structure of the planet.
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1. Introduction

One of the most significant goals of modern astronomy is the
detection and characterization of planets similar to our Earth: a
terrestrial planet lying in the habitable zone (HZ; e.g., Kasting et
al. 1993) of its host star. That will place our Earth into context,
as just the closest member of the habitable telluric planet class,
and will possibly establish whether life exists elsewhere in the
Universe. While direct detection of habitable terrestrialplanets
around solar-type stars are envisioned with future ambitious mis-
sions like Terrestrial Planet Finder (e.g., Traub et al. 2007) and
Darwin (e.g., Cockell et al. 2008), technological developments
are still needed to make these missions successful, and noneof
them is fully funded. In this context, the indirect detection of
terrestrial planets transiting nearby M dwarfs represent apromis-
ing shortcut (e.g., Charbonneau 2009). Indeed, the planet-to-star
contrast for an Earth-size planet orbiting in the HZ of an M dwarf
is much more favorable than for the Earth-Sun system, permit-
ting the detection of atmospheric biosignatures by eclipsespec-
troscopy with the planned James Webb Space Telescope (JWST,
e.g., Seager et al. 2009, Kaltenegger & Traub 2009) without the
challenging need to separate the light of the planet from that of
its host star.

Two different approaches are presently used to detect low-
mass planets transiting nearby M dwarfs.

1. Doppler surveys targeting nearby M dwarfs have detected
several low-mass planets, including a few ‘hot Neptunes’
and ‘super-Earths’1. The subsequent search for the transits
of these planets revealed the transiting nature of GJ 436b
(Gillon et al. 2007b), the first transiting planet significantly
smaller than Jupiter. A growing number of habitable super-
Earths are expected in the near future and, clearly, this effort
should be pursued and intensified, because only a substantial
increase of these detections (∼ × 50-100) will reveal transit-
ing habitable super-Earths.

2. Most of the known transiting planets have been detected
by dedicated photometric surveys monitoring thousands of
stars in fairly large fields of view. Nevertheless, nearby M
dwarfs are spread all over the sky, so most transit surveys
do not probe enough of them to make a transit detection
likely. An alternative approach is used by the MEarth Project
(Nutzman & Charbonneau 2008). This survey individually
monitors nearby M dwarfs with eight 40cm telescopes lo-
cated at Mt. Hopkins, Arizona. Thanks to the small size of
its targets, MEarth is sensitive to transiting planets downto
a few R⊕, as demonstrated by its recent detection of a 2.68
R⊕ super-Earth transiting GJ 1214 (Charbonneau et al. 2009,

1 A super-Earth is loosely defined as a planet between 1 and 10 Earth
masses.
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hereafter C09). After CoRoT-7b (Léger et al. 2009, Queloz
et al. 2009), GJ 1214b is the second super-Earth caught in
transit. Unlike CoRoT-7b, GJ 1214b is a good target for
an atmospheric characterization with, e.g., the future JWST,
thanks to the small size and infrared brightness of its host
star. Nevertheless, the approach used by MEarth is young
and its effectiveness to detect habitable planets is difficult to
assess.

We outline here the potential of a third approach to discover
habitable planets transiting nearby M dwarfs. Its main principle
is simple: planets form within disks, therefore a planet orbiting
in the HZ of a given star should have a highera priori tran-
sit probability if its star harbors a known transiting planet. This
assumption is supported by the small scatter of the orbital in-
clinations of the eight planets of the solar system (rms = 2.2
deg) and of the regular satellites of Jupiter (rms = 0.35 deg)
and Saturn (rms = 2.8 deg). For dynamical stability reasons, the
fact that low-mass planets systems (e.g., GJ 581, HD 40307)
detected by Doppler surveys tend to be ‘packed’ also favors a
small scatter of the orbital inclinations. RecentKepler results
also support this assumption (Steffen et al. 2010, Holman et al.
2010). Depending on the orbital inclination of the known tran-
siting planet, on the assumed distribution of the orbital inclina-
tions of the planetary system, on the size of the star, and on its
physical distance to its HZ, significantly enhanced transitproba-
bilities can be expected for habitable planets. A dedicatedhigh-
precision photometric monitoring of M dwarfs known to harbor
close-in transiting planets could thus be an efficient way to de-
tect transiting habitable planets in the near future. The aim of
this Research Note is to assess the potential of this approach for
the only M dwarf presently known to host a transiting super-
Earth, GJ 1214. Section 2 presents our computational method.
Our results are given in Sect. 3 and are discussed in Sect. 4.

2. Transit probabilities for additional planets

To account for the uncertainty of the measured orbital inclina-
tion for the known planet and to include the possibility thatthe
searched planet does not share the exact same inclinations,we
compute the transit probability with Monte-Carlo simulations.

We define a ‘terrestrial’ region extending from twice the pe-
riod of the transiting planet to the ice line defined as (Ogihara &
Ida 2009)

rice = 2.7

(

L∗
L⊙

)2

AU, (1)

whereL∗ andL⊙ are the luminosity of the star and the Sun. For
GJ 1214, we takeL∗ = 0.00328L⊙ for GJ 1214 (C09). This
luminosity translates intorice = 0.155 AU. UsingM∗ = 0.157
M⊙ for GJ 1214 (C09), the corresponding orbital period is only
56 days.

We assume circular orbits for all planets. We divide the de-
duced terrestrial region into 1000 equal steps in semi-major axis.
For each semi-major axisai (i = 1 : 1000), 10,000 orbital incli-
nationsik (k = 1 : 10000) are drawn via

ik ∼ N(itp, σ2
tp + σ

2
disk) , (2)

whereN(m, n2) represents the normal distribution of meanm and
variancen2, itp andσtp are the orbital inclination of the known
transiting planet and its 1-σ error, andσdisk is the assumed stan-
dard deviation of the orbital inclinations in the planetarysys-
tems. We adoptitp = 88.62±0.35 deg (C09), andσdisk = 2.2 deg,

the corresponding value for the eight planets of the solar system
(Murray & Dermott 2000). We also test values twice smaller and
larger forσdisk, i.e. 1.1 and 4.4 deg, and the unrealistic value
σdisk = 0 deg to illustrate the influence of the inclination scatter
in the planetary systems.

For each orbital inclinationik drawn via Eq. 2, a transit im-
pact parameterbk is computed via

bk =
ai

R∗
cosik. (3)

We useR∗ = 0.211R⊙ (C09). If the absolute value ofbk is lower
than 1, a transit is recognized. If so, the transit durationDk is
computed via

Dk =
PiR∗
πa

√

1− b2
k, (4)

wherePi is the orbital period. Eq. 4 assumes that the planet has
a negligible size compared to the star (e.g., Seager & Mallén-
Ornelas 2003).

For each step in semi-major axis, the transit probability is
computed as the fraction of the 10,000 drawn inclinations lead-
ing to a transit. We also compute for each step the geometric
transit probabilityPtr, neglecting the transiting nature of the
known planet, using

Ptr =
R∗
a

. (5)

Following Kasting et al. (1993), we define the inner edge
HZin and outer edgeHZout of the habitable zone as

HZin = 0.95

(

L∗
L⊙

)2

AU, (6)

HZout = 1.37

(

L∗
L⊙

)2

AU. (7)

From these formula, the HZ of GJ 1214 extends from 0.054 to
0.078 AU. These edges correspond to orbital periods of 11.6
and 20.1 days. We finally average the transit probabilities and
durations for the whole HZ to obtain a representative value for
GJ 1214.

3. Application

Neglecting the transiting nature of GJ 1214b, a planet in theHZ
of GJ 1214 would have a mean transit probability of only 1.5%.
Taking into account the transits of GJ 1214b and assumingσdisk
= 2.2 deg leads to a much higher transit probability of 25.1 %
(Fig. 1), the mean expected duration of a transit being 1.4 hour.
A scatter twice larger for the orbital inclinations in the GJ1214
planetary system would lead to a reduced transit probability of
14.8%, which is still ten times higher than the probability ex-
pected if we do not consider that GJ 1214b does transit. Forσdisk
= 1.1 deg, the probability goes up to 30.1 %, while it goes down
to 7.7% for fully coplanar orbits. The difference between these
latter two values well illustrates the advantage given by the fact
that planets of the same system are probably not perfectly copla-
nar.

Assumingσdisk = 2.2 deg and that a terrestrial planet orbits
in the HZ of GJ 1214, a constant photometric monitoring of the
star during 20.1 days would therefore have a∼ 25 % probability
to catch at least one of its transits, if a sufficiently high photomet-
ric precision is reached. Two main options can be consideredto
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perform this photometric search: a multi-site ground-based sur-
vey using several telescopes spread in longitude or a space-based
monitoring using an instrument able to stare at GJ 1214 for three
weeks.

Ground-based photometric time series reaching the sub-
mmag precision level for a time sampling better than one minute
have been obtained in the optical for several transiting planets
(e.g., Gillon et al. 2009, Johnson et al. 2009, Winn et al. 2009).
Our own analysis of most of these data makes us conclude that
a transit with a depth as low as one mmag could be firmly de-
tected with a such a photometric precision. Shallower occulta-
tions of short period transiting planets could be detected from
the ground (e.g., Sing & López-Morales 2009), but only because
the expected timing and shape of the occultations are known
via the analysis of the transits and radial velocities (RV).For
a transit that could happen anytime during a run of two months,
a detection limit better than one mmag seems unrealistic with
current instruments and techniques. Furthermore, the mostpre-
cise ground-based differential light curves were obtained during
nights with excellent atmospheric conditions and at low airmass,
far from the average observation conditions of a multi-sitesur-
vey observing the same star during three weeks. For these rea-
sons, the actual detection limit for such a program would proba-
bly be closer to two than one mmag.

Figure 1 (middle panel) shows that with this photometric pre-
cision, a ground-based monitoring campaign of GJ 1214 would
be sensitive to very small planets. Planets as small as the Earth
or even smaller could be detected. It is worth noticing here that
the detection limit achievable from the ground is mostly limited
by the atmosphere and the photometric correlated noises that it
creates.

The detection limit could be much better for a space-based
telescope. For instance, theSpitzer telescope has produced
several high-precision photometric time-series for another M-
dwarf, GJ 436 (e.g., Gillon et al. 2007a, Deming et al. 2007).
Spitzer’s cryogen is now depleted, but the telescope is still ac-
tive (under the name ‘Warm Spitzer’ ) and keeps its full potential
in the two bluest channels (3.6 and 4.5µm) of its IRAC camera
(Stauffer et al. 2007). Our analysis of the occultation photometry
obtained for GJ 436b at 3.6µm (Lanotte et al., in prep.) allows
us to conclude that an eclipse of 200 ppm would be firmly de-
tected for GJ 436 within the 3.6µm channel ofSpitzer. At 3.6
µm, GJ 1214 is 2.7 magnitudes fainter than GJ 436. Considering
a complete noise model andSpitzer instrumental throughput cor-
rections2, we obtain a SNR of∼990 for a 12s exposure at 3.6µm.
This translates into a theoretical error of 450 ppm per minute,
and 59 ppm per hour. Considering only white noise, we would
therefore conclude that a transit of 240 ppm and lasting one hour
could consequently be detected at 4-σ. Still, fluxes measured
with the InSb detectors of IRAC show a strong correlation with
the changing position of the star on the array (e.g., Knutsonet
al. 2008). This purely spatial ‘pixel-phase’ effect is due to the
combination of the undersampling of the stellar image, the intra-
pixel sensitivity, and the jitter of the telescope. It can bewell
modeled by an analytic function of thex andy coordinates of
the stellar image center, but the inaccuracy of this model and the
finite precision on the measured stellar positions result ina resid-
ual photometric correlated noise with a timescale similar to that
of a typical transit. From our experience with GJ 436 (Lanotte et
al., in prep.) and CoRoT-2 (Gillon et al. 2010), the impact ofthe
‘pixel-phase’ effect on the final photometric precision is SNR-
dependent, at least in the high SNR regime. Basically, it leads

2 http://ssc.spitzer.caltech.edu/documents/som/

to errors on the fitted parameters (including the eclipse depth)
∼twice larger than expected when considering only white noise.
In the case of GJ 1214, a transit lasting one hour would thus need
a depth of∼450 ppm to be detected at 4-σ. This limit is shown
in Fig. 2. It corresponds to a planet size of 0.49 R⊕, i.e. smaller
than Mars (0.53R⊕).

Alternatively, one may await the RV detection of any addi-
tional planetbefore undertaking the photometric search for its
transit. Not only would the presence of the planet be known with
certainty, but the observational window would also be narrowed
with ana priori ephemeris. To estimate the observational effort
required for a RV detection for GJ 1214 (V=15), we compute
the detection limit (Zechmeister & Kürster 2009) imposed by the
28 HARPS RVs reported in the detection paper (C09). Figure 1
(bottom panel) shows the semi-amplitude above which a planet
would have been detected, with a 99% confidence level (for all
of our 12 trial phases). The plot shows fluctuations because we
have too few data points for a clean sampling, but more data will
smooth the curve and it will eventually be independent of the
period. More data will scale down the detection limit and, antic-
ipating a better sampling from these additional points, a K∼10
m.s−1 limit (indicated by a dashed line) seems a better estimate
for the velocity amplitude we aim to scale. To detect an Earth-
mass planet orbiting at 0.066 AU – or K∼0.88 m.s−1 – we will
need 130 times more data points (> 2000 h). A true Earth-mass
planet (or lower mass) requires therefore unrealistic observing
time with current velocimeters.

4. Discussion

GJ 1214 appears to be a promising target for the approach de-
scribed here. Because of its small size and luminosity, the tran-
sit probability in its HZ is fairly large, and very small planets
could be detected transiting this star. Another major advantage
of GJ 1214 is the proximity of its HZ. To probe its HZ, a constant
monitoring of the star during only three weeks would be needed.
For planets orbiting in the inner part of the HZ, two transitscould
be observed during such a run of three weeks, leading to an im-
proved sensitivity to very small planets.

For the area interior to the HZ, the transit probability goes
up to a mean value of 44 % for GJ 1214 (asssumingσdisk =

2.2 deg). Because of the larger number of transits observed for
shorter periods, the sensitivity to smaller planets would be better
than for the HZ. For instance,Warm Spitzer could then detect a
planet as small as Mercury (0.38R⊕).

Discovery of a transiting habitable-zone planet as small as
Mars would create a very challenging mass measurement for the
RV method. Mars is nearly ten times less massive that the Earth,
and the mean semi-amplitude of the RV wobble due to a Mars-
mass planet orbiting in the HZ of GJ 1214 would be only 9.4
cm.s−1, while we have seen in Sect. 3 that an Earth-mass planet
producing a RV signal ten times larger would be out of reach for
current spectrographs. Of course, with thea priori knowledge
of the phase and period, one would need to sample the RV or-
bit at its extrema only, facilitating the mass measurement of an
Earth-mass planet. Still, the measure seems difficult and for sure,
measuring the mass for a Mars-mass planet would remain out of
reach for current instruments. To measure the mass of Earth and
sub-Earth mass planets, one would have to rely on future facili-
ties such as Espresso/VLT (Pasquini et al. 2009) or Codex/ELT
(Liske et al. 2009).

We argue, however, that if the main goal is to find target
planets for follow-up atmosphere observations for habitability,
a planet mass is not completely necessary. This statement holds
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Fig. 1. Top: transit probability for a planet in a circular orbit
around GJ 1214 as a function of the orbital period, assuming
σdisk = 0 (black), 1.1 (green), 2.2 (red) and 4.4 deg (blue), and
neglecting the transiting nature of the known planet (dashed
line). Middle: transit depth of a planet orbiting around GJ 1214
as a function of the planetary radius.Bottom: RV semi-amplitude
above which a planet could be detected in the HARPS data. See
text for details.

as long as the planet radius detection has a high SNR and as
long as the planet is small enough. A high SNR transit detection
for a small planet is sufficient to confirm planet candidacy for a
transiting planet discovered from a targeted search. In contrast,
a planet mass has traditionally been required for exoplanets dis-
covered by planet transit surveys. Because transit surveysthat si-
multaneously monitor tens of thousands of stars are fraughtwith
false positives, a planet mass is the surest way to confirm the
planetary nature of a transit signature. The argument here is that
false positives are not a problem for transit signatures detected
around a star with another known transiting planet, as long as the
radius measurement is very robust.

For planets with small radii in the habitable zones of their
host stars, we can derive an upper mass limit, assuming that the
most massive a planet can be is one of pure iron (Fig. 2). We
can argue for a lower mass limit, using theory and models, that
a small planet in the stars HZ will not have an H/He envelope.
Note that an H/He envelope is usually considered bad for hab-
itability because it traps heat making the planet surface too hot
for complex molecules to form. Arguments about the loss of a
planets interior water reservoir (Kuchner et al. 2003; Léger et al.
2004) due to either stellar irradiation or from energy from tidal
friction (e.g. Io) could be used to further theoretically constrain
the planet mass.

If biosignatures or habitability features are detected, then
mass estimates using future facilities are warranted, despite the
huge amounts of telescope time needed.

Our results for GJ 1214 outline the scientific interest of the
approach used by the MEarth Project. Not only has the MEarth
survey demonstrated its capacity to detect super-Earths transit-
ing nearby M dwarfs, but it also traces the shortest path to the
detection of habitable planets as small, or even smaller, than the
Earth and for which the detection of biosignatures could be pos-
sible in the near future. In this context, we advocate the develop-
ment of the approach used by MEarth (other facilites spread in
longitude, a similar survey observing from Southern hemisphere,
larger telescopes and IR cameras to monitor cooler M dwarfs),
but also an intense and high-precision photometric monitoring of
GJ 1214 and of the other transiting systems that MEarth (or simi-
lar projects) will detect. This two-step approach targeting nearby
M dwarfs permits the detection in the near-future of transiting
habitable planets much smaller than our Earth which would be
out of reach for existing Doppler and transit surveys.

Acknowledgements. M. Gillon is a FNRS Research Associate, and acknowl-
edges support from the Belgian Science Policy Office in the form of a Return
Grant. A. H. M.J. Triaud researches are funded by the Swiss Fond National de
la Recherche Scientifique. The authors thank Justin Crepp for having spotted
an error in an equation in the first version of this manuscript. The anonymous
referee is acknowledged for his valuable report. Last but not least, we sincerely
thank NASA for believing in the idea proposed here and for having accepted our
Spitzer GO-7 program of 485 hours of continuous observation of GJ 1214.

References

Charbonneau, D., 2009, Transiting Planets, Proceedings ofthe International
Astronomical Union, IAU Symposium, Volume 253, p. 1-8

Charbonneau, D., Berta, Z., Irwin, J., et al., 2009, Nature,462, 891
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