14 research outputs found
A modified UTAUT model for the acceptance and use of digital technology for tackling COVID-19
COVID-19 pandemic expedites the development of digital technologies to tackle the spread of the virus. Several digital interventions have been deployed to reduce the catastrophic impact of the pandemic and observe preventive measures. However, the adoption and utilization of these technologies by the affected populace has been a daunting task. Therefore, this study carried out exploratory investigation of the factors influencing the behavioural intention (BI) of people to accept COVID-19 digital tackling technologies (CDTT) using the UTAUT (Unified Theory of Acceptance and Use of Technology) framework. The study applied principal components analysis and multiple regression analysis for hypotheses testing. The study revealed that performance expectancy (PE), facilitating conditions (FC) and social influence (SI) are the best predictors of people's BI to accept CDTT. Also, organizationalinfluence and benefit (OIB) and government expectancy and benefits (GEB) influence the people's BI. However, variables such as age, gender and voluntariness to use CDTT have no significance to influence BI because the CDTT is still nascent and not easily accessible. The results show that the decision-makers and regulators should consider inciting variables such as PE, FC, SI, OIB and GEB, that motivate the acceptance and use of CDTT. Furthermore, the populace must be sensitized to the availability and use of CDTT in all communities. Also, the path diagram and hypothesis testing results for CDTT acceptance and use, will help government and private organizations in planning and responding to the digitalization of COVID-19 protective measures and hence revise the COVID-19 health protection regulation
Application of intelligence-based computational techniques for classification and early differential diagnosis of COVID-19 disease
Clinical methods are used for diagnosing COVID-19 infected patients, but reports posit that, several people who were initially tested positive of COVID-19, and who had some underlying diseases, turned out having negative results after further tests. Therefore, the performance of clinical methods is not always guaranteed. Moreover, chest X-ray image data of COVID-19 infected patients are mostly used in the computational models for COVID-19 diagnosis, while the use of common symptoms, such as fever, cough, fatigue, muscle aches, headache, etc. in computational models is not yet reported. In this study, we employed seven classification algorithms to empirically test and verify their efficacy when applied to diagnose COVID-19 using the aforementioned symptoms. We experimented with Logistic Regression (LR), Support Vector Machine (SVM), Naïve Byes (NB), Decision Tree (DT), Multilayer Perceptron (MLP), Fuzzy Cognitive Map (FCM) and Deep Neural Network (DNN) algorithms. The techniques were subjected to random undersampling and oversampling. Our results showed that with class imbalance, MLP and DNN outperform others. However, without class imbalance, MLP, FCM and DNN outperform others with the use of random undersampling, but DNN has the best performance by utilizing random oversampling. This study identified MLP, FCM and DNN as better classifiers over LR, NB, DT and SVM, so that healthcare software system developers can adopt them to develop intelligence-based expert systems which both medical personnel and patients can use for differential diagnosis of COVID-19 based on the aforementioned symptoms. However, the test of performance must not be limited to the traditional performance metrics