202 research outputs found

    Detecting short spatial scale local adaptation and epistatic selection in climate-related candidate genes in European beech (Fagus sylvatica) populations

    Get PDF
    Detecting signatures of selection in tree populations threatened by climate change is currently a major research priority. Here, we investigated the signature of local adaptation over a short spatial scale using 96 European beech (Fagus sylvatica L.) individuals originating from two pairs of populations on the northern and southern slopes of Mont Ventoux (south-eastern France). We performed both single and multi-locus analysis of selection based on 53 climate-related candidate genes containing 546 SNPs. FST outlier methods at the SNP level revealed a weak signal of selection, with three marginally significant outliers in the northern populations. At the gene-level, considering haplotypes as alleles, two additional marginally significant outliers were detected, one on each slope. To account for the uncertainty of haplotype inference, we averaged the Bayes Factors over many possible phase reconstructions. Epistatic selection offers a realistic multi-locus model of selection in natural populations. Here, we used a test suggested by Ohta based on the decomposition of the variance of linkage disequilibrium. Over all populations, 0.23% of the SNP pairs (haplotypes) showed evidence of epistatic selection, with nearly 80% of them being within genes. One of the between gene epistatic selection signals arose between an FST outlier and a non-synonymous mutation in a drought response gene. Additionally, we identified haplotypes containing selectively advantageous allele combinations which were unique to high or low-elevations and northern or southern populations. Several haplotypes contained non-synonymous mutations situated in genes with known functional importance for adaptation to climatic factor

    Looking for local adaptation:Convergent microevolution in aleppo pine (pinus halepensis)

    Get PDF
    Finding outlier loci underlying local adaptation is challenging and is best approached by suitable sampling design and rigorous method selection. In this study, we aimed to detect outlier loci (single nucleotide polymorphisms, SNPs) at the local scale by using Aleppo pine (Pinus halepensis), a drought resistant conifer that has colonized many habitats in the Mediterranean Basin, as the model species. We used a nested sampling approach that considered replicated altitudinal gradients for three contrasting sites. We genotyped samples at 294 SNPs located in genomic regions selected to maximize outlier detection. We then applied three different statistical methodologies-Two Bayesian outlier methods and one latent factor principal component method-To identify outlier loci. No SNP was an outlier for all three methods, while eight SNPs were detected by at least two methods and 17 were detected only by one method. From the intersection of outlier SNPs, only one presented an allelic frequency pattern associated with the elevational gradient across the three sites. In a context of multiple populations under similar selective pressures, our results underline the need for careful examination of outliers detected in genomic scans before considering them as candidates for convergent adaptation

    Trends in cardiac dynamics : towards coupled models of intracavity fluid dynamics and deformable wall mechanics

    No full text
    We report here preliminary results in the development of a computational model in cardiac mechanics which takes into account the coupled effects of ventricular mechanics and intracardiac hemodynamics. In this first work, complex geometrical, architectural and rheological properties of the organ have been strongly simplified in order to propose a “quasi-analytical” model. We assume axisymmetrical geometry of the ventricle and myocardium material to be made of a sheath of a composite, collagenic, fibrous and active muscle medium inside which the blood dynamics is dominated by unsteady inertial effects. Moreover, we have made grossly simplifying assumptions concerning rather stringent and unusual functioning conditions about the mechanical behavior of the input and output valvular and vascular impedances as well as the biochemical action of the fiber. By imposing the time variation of the input and output flow rate and activation function, it is possible, assuming uniformity of the pressure stresses applied to the internal wall surface at every instant of the cardiac cycle, to calculate the overall distribution of fluid pressure and velocity inside the cavity as well as the distributions of stresses and strains inside the wall. It was shown that under the action of a given biochemical activation function, both kinematics of the wall and induced motion of the fluid are such that the boundary conditions concerning normal pressure stresses conservation was constantly satisfied. Moreover, the results concerning the dynamics of the blood flow, as viewed through the human clinical investigations using velocimetric technology based upon color doppler ultrasound, are in accordance with those obtained from such a model, at least during the ejection phase. In particular, contrarily to the filling phase processes, the ejection dynamics is such that the time evolution of the blood velocity measured along the cavity axis does not display any phase shift characterizing an effect similar to a velocity propagation phenomenon. This model reveals to be interesting by its dual point of view permitting to characterize the cardiac performance from both the fluid and envelope kinematics data, given a few number of parameters related to the geometrical and rheological properties of the heart

    Fluid-structure interaction in cardiac dynamics

    No full text
    International audienc

    Theoretical models in mechanics of the left ventricle.

    No full text
    International audienceDifferent rheological concepts and theoretical studies have been recently presented using models of myocardial mechanics. Complex analysis of the mechanical behavior of the left ventricular wall have been developed in order to estimate the local stresses and deformations that occur during the heart cycle as well as the ventricular stroke volume and pressure. Theoretical models have taken into account non-linear and viscoelastic passive properties of the myocardium tissue, when subjected to large deformations, through given strain energy functions or stress-strain relations. Different prolate spheroid geometries have been considered for such thick shell cardiac structure. During the active state of the contraction, the rheological behavior of the fibers has been described using different muscle models and relationships between fiber tension and strain, and activation degree. A forthcoming approach for bridging the gap between the knowledge of the muscle fiber microrheological properties and the study of the mechanical behavior of the entire ventricle, consists in including anisotropic and inhomogeneous effects through fiber direction field
    corecore