383 research outputs found

    The Waveform Digitiser of the Double Chooz Experiment: Performance and Quantisation Effects on PhotoMultiplier Tube Signals

    Full text link
    We present the waveform digitiser used in the Double Chooz experiment. We describe the hardware and the custom-built firmware specifically developed for the experiment. The performance of the device is tested with regards to digitising low light level signals from photomultiplier tubes and measuring pulse charge. This highlights the role of quantisation effects and leads to some general recommendations on the design and use of waveform digitisers.Comment: 14 pages, 8 figures, accepted for publication in JINS

    Initial Results from the CHOOZ Long Baseline Reactor Neutrino Oscillation Experiment

    Get PDF
    Initial results are presented from CHOOZ, a long-baseline reactor-neutrino vacuum-oscillation experiment. Electron antineutrinos were detected by a liquid scintillation calorimeter located at a distance of about 1 km. The detector was constructed in a tunnel protected from cosmic rays by a 300 MWE rock overburden. This massive shielding strongly reduced potentially troublesome backgrounds due to cosmic-ray muons, leading to a background rate of about one event per day, more than an order of magnitude smaller than the observed neutrino signal. From the statistical agreement between detected and expected neutrino event rates, we find (at 90% confidence level) no evidence for neutrino oscillations in the electron antineutrino disappearance mode for the parameter region given approximately by deltam**2 > 0.9 10**(-3) eV**2 for maximum mixing and (sin(2 theta)**2) > 0.18 for large deltam**2.Comment: 13 pages, Latex, submitted to Physics Letters

    Rearrangement of cluster structure during fission processes

    Full text link
    Results of molecular dynamics simulations of fission reactions Na102+Na7++Na3+Na_{10}^{2+} \to Na_7^+ + Na_3^+ and Na182+2Na9+Na_{18}^{2+} \to 2 Na_9^+ are presented. Dependence of the fission barriers on isomer structure of the parent cluster is analyzed. It is demonstrated that the energy necessary for removing homothetic groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. Importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual separation of the daughter fragments begins and/or forming a "neck" between the separating fragments

    Limits on Neutrino Oscillations from the CHOOZ Experiment

    Get PDF
    We present new results based on the entire CHOOZ data sample. We find (at 90% confidence level) no evidence for neutrino oscillations in the anti_nue disappearance mode, for the parameter region given by approximately Delta m**2 > 7 x 10**-4 eV^2 for maximum mixing, and sin**2(2 theta) = 0.10 for large Delta m**2. Lower sensitivity results, based only on the comparison of the positron spectra from the two different-distance nuclear reactors, are also presented; these are independent of the absolute normalization of the anti_nue flux, the cross section, the number of target protons and the detector efficiencies.Comment: 19 pages, 11 figures, Latex fil

    Search for neutrino oscillations on a long base-line at the CHOOZ nuclear power station

    Get PDF
    This final article about the CHOOZ experiment presents a complete description of the electron antineutrino source and detector, the calibration methods and stability checks, the event reconstruction procedures and the Monte Carlo simulation. The data analysis, systematic effects and the methods used to reach our conclusions are fully discussed. Some new remarks are presented on the deduction of the confidence limits and on the correct treatment of systematic errors.Comment: 41 pages, 59 figures, Latex file, accepted for publication by Eur.Phys.J.

    Two databases derived from BGC-Argo float measurements for marine biogeochemical and bio-optical applications

    Get PDF
    Since 2012, an array of 105 Biogeochemical-Argo (BGC-Argo) floats has been deployed across the world’s oceans to assist in filling observational gaps that are required for characterizing open-ocean environments. Profiles of biogeochemical (chlorophyll and dissolved organic matter) and optical (single-wavelength particulate optical backscattering, downward irradiance at three wavelengths, and photosynthetically available radiation) variables are collected in the upper 1000m every 1 to 10 days. The database of 9837 vertical profiles collected up to January 2016 is presented and its spatial and temporal coverage is discussed. Each variable is quality controlled with specifically developed procedures and its time series is quality-assessed to identify issues related to biofouling and/or instrument drift. A second database of 5748 profile-derived products within the first optical depth (i.e., the layer of interest for satellite remote sensing) is also presented and its spatiotemporal distribution discussed. This database, devoted to field and remote ocean color applications, includes diffuse attenuation coefficients for downward irradiance at three narrow wavebands and one broad waveband (photosynthetically available radiation), calibrated chlorophyll and fluorescent dissolved organic matter concentrations, and single wavelength particulate optical backscattering. To demonstrate the applicability of these databases, data within the first optical depth are compared with previously established bio-optical models and used to validate remotely derived bio-optical products. The quality-controlled databases are publicly available from the SEANOE (SEA scieNtific Open data Edition) publisher at https://doi.org/10.17882/49388 and https://doi.org/10.17882/47142 for vertical profiles and products within the first optical depth, respectively

    Search for electron antineutrino interactions with the Borexino Counting Test Facility at Gran Sasso

    Full text link
    Electron antineutrino interactions above the inverse beta decay energy of protons (E_\bar{\nu}_e>1.8) where looked for with the Borexino Counting Test Facility (CTF). One candidate event survived after rejection of background, which included muon-induced neutrons and random coincidences. An upper limit on the solar νˉe\bar{\nu}_{e} flux, assumed having the 8^8B solar neutrino energy spectrum, of 1.1×105\times10^{5} cm2^{-2}~s1^{-1} (90% C.L.) was set with a 7.8 ton ×\times year exposure. This upper limit corresponds to a solar neutrino transition probability, νeνˉe\nu_{e} \to \bar{\nu}_{e}, of 0.02 (90% C.L.). Predictions for antineutrino detection with Borexino, including geoneutrinos, are discussed on the basis of background measurements performed with the CTF.Comment: 10 pages, 9 figures, 5 table

    Recent Borexino results and prospects for the near future

    Full text link
    The Borexino experiment, located in the Gran Sasso National Laboratory, is an organic liquid scintillator detector conceived for the real time spectroscopy of low energy solar neutrinos. The data taking campaign phase I (2007 - 2010) has allowed the first independent measurements of 7Be, 8B and pep fluxes as well as the first measurement of anti-neutrinos from the earth. After a purification of the scintillator, Borexino is now in phase II since 2011. We review here the recent results achieved during 2013, concerning the seasonal modulation in the 7Be signal, the study of cosmogenic backgrounds and the updated measurement of geo-neutrinos. We also review the upcoming measurements from phase II data (pp, pep, CNO) and the project SOX devoted to the study of sterile neutrinos via the use of a 51Cr neutrino source and a 144Ce-144Pr antineutrino source placed in close proximity of the active material.Comment: 8 pages, 11 figures. To be published as proceedings of Rencontres de Moriond EW 201

    Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun

    Full text link
    The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos reaching Earth, providing us with key information about what goes on at the core of our star. Several experiments have now confirmed the observation of neutrino oscillations by detecting neutrinos from secondary nuclear processes in the Sun; this is the first direct spectral measurement of the neutrinos from the keystone proton-proton fusion. This observation is a crucial step towards the completion of the spectroscopy of pp-chain neutrinos, as well as further validation of the LMA-MSW model of neutrino oscillations.Comment: Proceedings from NOW (Neutrino Oscillation Workshop) 201
    corecore