121 research outputs found
Compensatory Growth Induced in Zebrafish Larvae after Pre-Exposure to a Microcystis aeruginosa Natural Bloom Extract Containing Microcystins
Early life stage tests with zebrafish (Danio rerio) were used to detect toxic effects of compounds from a Microcystis aeruginosa natural bloom extract on their embryolarval development. We carried out the exposure of developing stages of fish to complex cyanobacterial blooms containing hepatotoxic molecules - microcystins. Fish embryo tests performed with the bloom extract containing 3 mg·L−1 Eq microcystin-LR showed that after 24 h of exposure all fish embryos died. The same tests performed with other diluted extracts (containing 0.3, 0.1 and 0.03 mg·L−1 Eq microcystin-LR) were shown to have an influence on zebrafish development and a large number of embryos showed malformation signs (edema, bent and curving tail). After hatching the larvae were transferred to a medium without toxins to follow the larval development under the new conditions. The specific growth of the pre-exposed larvae was significantly more important than that of the control larvae. This may represent a compensatory growth used to reduce the difference in size with the control fish noted after hatching
Biomarkers of effect as determined in human biomonitoring studies on hexavalent chromium and cadmium in the period 2008–2020
This research was supported by funding from the European Union's Horizon 2020 research and innovation Programme under grant agreement No 733032 HBM4EU.A number of human biomonitoring (HBM) studies have presented data on exposure to hexavalent chromium [Cr (VI)] and cadmium (Cd), but comparatively few include results on effect biomarkers. The latter are needed to identify associations between exposure and adverse outcomes (AOs) in order to assess public health implications. To support improved derivation of EU regulation and policy making, it is of great importance to identify the most reliable effect biomarkers for these heavy metals that can be used in HBM studies. In the framework of the Human Biomonitoring for Europe (HBM4EU) initiative, our study aim was to identify effect biomarkers linking Cr(VI) and Cd exposure to selected AOs including cancer, immunotoxicity, oxidative stress, and omics/epigenetics. A comprehensive PubMed search identified recent HBM studies, in which effect biomarkers were examined. Validity and applicability of the markers in HBM studies are discussed. The most frequently analysed effect biomarkers regarding Cr(VI) exposure and its association with cancer were those indicating oxidative stress (e.g., 8-hydroxy-2 & rsquo;-deoxyguanosine (8-OHdG), malondialdehyde (MDA), glutathione (GSH)) and DNA or chromosomal damage (comet and micronucleus assays). With respect to Cd and to some extent Cr, 0-2-microglobulin (B2-MG) and N-acetyl-0-D-glucosaminidase (NAG) are well-established, sensitive, and the most common effect biomarkers to relate Cd or Cr exposure to renal tubular dysfunction. Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule (KIM)-1 could serve as sensitive biomarkers of acute kidney injury in response to both metals, but need further investigation in HBM studies. Omics-based biomarkers, i.e., changes in the (epi-)genome, transcriptome, proteome, and metabolome associated with Cr and/or Cd exposure, are promising effect biomarkers, but more HBM data are needed to confirm their significance. The combination of established effect markers and omics biomarkers may represent the strongest approach, especially if based on knowledge of mechanistic principles. To this aim, also mechanistic data were collected to provide guidance on the use of more sensitive and specific effect biomarkers. This also led to the identification of knowledge gaps relevant to the direction of future research.European Commission 733032 HBM4E
A mesocosm experiment investigating the effects of substratum quality and wave exposure on the survival of fish eggs
In a mesocosm experiment, the attachment of bream (Abramis brama) eggs to spawning substrata with and without periphytic biofilm coverage and their subsequent survival with and without low-intensity wave exposure were investigated. Egg attachment was reduced by 73% on spawning substrata with a natural periphytic biofilm, compared to clean substrata. Overall, this initial difference in egg numbers persisted until hatching. The difference in egg numbers was even increased in the wave treatment, while it was reduced in the no-wave control treatment. Exposure to a low-intensity wave regime affected egg development between the two biofilm treatments differently. Waves enhanced egg survival on substrata without a biofilm but reduced the survival of eggs on substrata with biofilm coverage. In the treatment combining biofilm-covered substrata and waves, no attached eggs survived until hatching. In all treatments, more than 75% of the eggs became detached from the spawning substrata during the egg incubation period, an
A Comprehensive Review
Funding: This project has received funding from the European Unions’ Horizon 2020 research and innovation Programme under grant agreement No 733032. HBM4EU.Polycyclic aromatic hydrocarbons (PAHs) are among the chemicals with proven impact on workers' health. The use of human biomonitoring (HBM) to assess occupational exposure to PAHs has become more common in recent years, but the data generated need an overall view to make them more usable by regulators and policymakers. This comprehensive review, developed under the Human Biomonitoring for Europe (HBM4EU) Initiative, was based on the literature available from 2008-2022, aiming to present and discuss the information on occupational exposure to PAHs, in order to identify the strengths and limitations of exposure and effect biomarkers and the knowledge needs for regulation in the workplace. The most frequently used exposure biomarker is urinary 1-hydroxypyrene (1-OH-PYR), a metabolite of pyrene. As effect biomarkers, those based on the measurement of oxidative stress (urinary 8-oxo-dG adducts) and genotoxicity (blood DNA strand-breaks) are the most common. Overall, a need to advance new harmonized approaches both in data and sample collection and in the use of appropriate biomarkers in occupational studies to obtain reliable and comparable data on PAH exposure in different industrial sectors, was noted. Moreover, the use of effect biomarkers can assist to identify work environments or activities of high risk, thus enabling preventive risk mitigation and management measures.publishersversionpublishe
Effects of Marine Toxins on the Reproduction and Early Stages Development of Aquatic Organisms
Marine organisms, and specially phytoplankton species, are able to produce a diverse array of toxic compounds that are not yet fully understood in terms of their main targets and biological function. Toxins such as saxitoxins, tetrodotoxin, palytoxin, nodularin, okadaic acid, domoic acid, may be produced in large amounts by dinoflagellates, cyanobacteria, bacteria and diatoms and accumulate in vectors that transfer the toxin along food chains. These may affect top predator organisms, including human populations, leading in some cases to death. Nevertheless, these toxins may also affect the reproduction of aquatic organisms that may be in contact with the toxins, either by decreasing the amount or quality of gametes or by affecting embryonic development. Adults of some species may be insensitive to toxins but early stages are more prone to intoxication because they lack effective enzymatic systems to detoxify the toxins and are more exposed to the toxins due to a higher metabolic growth rate. In this paper we review the current knowledge on the effects of some of the most common marine toxins on the reproduction and development of early stages of some organisms
Analysis of MicroRNA Expression in Embryonic Developmental Toxicity Induced by MC-RR
As cynobacterial blooms frequently occur in fresh waters throughout the world, microcystins (MCs) have caused serious damage to both wildlife and human health. MCs are known to have developmental toxicity, however, the possible molecular mechanism is largely unknown. This is the first toxicological study to integrate post-transcriptomic, proteomic and bioinformatics analysis to explore molecular mechanisms for developmental toxicity of MCs in zebrafish. After being microinjected directly into embryos, MC-RR dose-dependently decreased survival rates and increased malformation rates of embryos, causing various embryo abnormalities including loss of vascular integrity and hemorrhage. Expressions of 31 microRNAs (miRNAs) and 78 proteins were significantly affected at 72 hours post-fertilisation (hpf). Expressions of miR-430 and miR-125 families were also significantly changed. The altered expressions of miR-31 and miR-126 were likely responsible for the loss of vascular integrity. MC-RR significantly reduced the expressions of a number of proteins involved in energy metabolism, cell division, protein synthesis, cytoskeleton maintenance, response to stress and DNA replication. Bioinformatics analysis shows that several aberrantly expressed miRNAs and proteins (involved in various molecular pathways) were predicted to be potential MC-responsive miRNA-target pairs, and that their aberrant expressions should be the possible molecular mechanisms for the various developmental defects caused by MC-RR
Integrated Proteomic and Transcriptomic Investigation of the Acetaminophen Toxicity in Liver Microfluidic Biochip
Microfluidic bioartificial organs allow the reproduction of in vivo-like properties such as cell culture in a 3D dynamical micro environment. In this work, we established a method and a protocol for performing a toxicogenomic analysis of HepG2/C3A cultivated in a microfluidic biochip. Transcriptomic and proteomic analyses have shown the induction of the NRF2 pathway and the related drug metabolism pathways when the HepG2/C3A cells were cultivated in the biochip. The induction of those pathways in the biochip enhanced the metabolism of the N-acetyl-p-aminophenol drug (acetaminophen-APAP) when compared to Petri cultures. Thus, we observed 50% growth inhibition of cell proliferation at 1 mM in the biochip, which appeared similar to human plasmatic toxic concentrations reported at 2 mM. The metabolic signature of APAP toxicity in the biochip showed similar biomarkers as those reported in vivo, such as the calcium homeostasis, lipid metabolism and reorganization of the cytoskeleton, at the transcriptome and proteome levels (which was not the case in Petri dishes). These results demonstrate a specific molecular signature for acetaminophen at transcriptomic and proteomic levels closed to situations found in vivo. Interestingly, a common component of the signature of the APAP molecule was identified in Petri and biochip cultures via the perturbations of the DNA replication and cell cycle. These findings provide an important insight into the use of microfluidic biochips as new tools in biomarker research in pharmaceutical drug studies and predictive toxicity investigations
Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations
Drug-induced liver injury (DILI) cannot be accurately predicted by animal models. In addition, currently available in vitro methods do not allow for the estimation of hepatotoxic doses or the determination of an acceptable daily intake (ADI). To overcome this limitation, an in vitro/in silico method was established that predicts the risk of human DILI in relation to oral doses and blood concentrations. This method can be used to estimate DILI risk if the maximal blood concentration (Cmax) of the test compound is known. Moreover, an ADI can be estimated even for compounds without information on blood concentrations. To systematically optimize the in vitro system, two novel test performance metrics were introduced, the toxicity separation index (TSI) which quantifies how well a test differentiates between hepatotoxic and non-hepatotoxic compounds, and the toxicity estimation index (TEI) which measures how well hepatotoxic blood concentrations in vivo can be estimated. In vitro test performance was optimized for a training set of 28 compounds, based on TSI and TEI, demonstrating that (1) concentrations where cytotoxicity first becomes evident in vitro (EC10) yielded better metrics than higher toxicity thresholds (EC50); (2) compound incubation for 48 h was better than 24 h, with no further improvement of TSI after 7 days incubation; (3) metrics were moderately improved by adding gene expression to the test battery; (4) evaluation of pharmacokinetic parameters demonstrated that total blood compound concentrations and the 95%-population-based percentile of Cmax were best suited to estimate human toxicity. With a support vector machine-based classifier, using EC10 and Cmax as variables, the cross-validated sensitivity, specificity and accuracy for hepatotoxicity prediction were 100, 88 and 93%, respectively. Concentrations in the culture medium allowed extrapolation to blood concentrations in vivo that are associated with a specific probability of hepatotoxicity and the corresponding oral doses were obtained by reverse modeling. Application of this in vitro/in silico method to the rat hepatotoxicant pulegone resulted in an ADI that was similar to values previously established based on animal experiments. In conclusion, the proposed method links oral doses and blood concentrations of test compounds to the probability of hepatotoxicity
Application of human biomonitoring to assess occupational exposure to polycyclic aromatic hydrocarbons in Europe: a literature review
Os hidrocarbonetos aromáticos policÃclicos (HAPs) são produtos quÃmicos
com impacto em saúde ocupacional, pelo que a avaliação da exposição
humana através de estudos de biomonitorização tem aumentado nos
últimos anos. No entanto, os dados obtidos são ainda insuficientes para
os reguladores e decisores polÃticos. Este trabalho, no contexto da Iniciativa
Europeia em Biomonitorização Humana (HBM4EU), descreve uma
revisão da literatura sobre a exposição ocupacional aos HAPs na Europa,
entre 2008 e 2022, com o objetivo de identificar as vantagens e limitações
dos vários biomarcadores de exposição e /ou de efeito, bem como
o conhecimento em falta para melhorar a regulamentação. Os resultados
da análise dos 42 artigos elegÃveis para inclusão nesta revisão demonstram
que o biomarcador de exposição mais utilizado é o 1-hidroxipireno
urinário, sendo os biomarcadores de efeito mais comuns, biomarcadores
de stresse oxidativo e genotoxicidade. Globalmente, verificou-se a
necessidade de desenvolver novas abordagens de recolha de dados e
amostras, bem como a seleção apropriada de biomarcadores de forma a
obter dados fiáveis e comparáveis em diferentes setores industriais. Além
disso, a aplicação de biomarcadores de efeito contribui para a identificação
de ambientes de trabalho ou atividades de alto risco, possibilitando
medidas de mitigação e gestão de risco.Polycyclic aromatic hydrocarbons (PAHs) are chemicals with impact on
occupational health, therefore the assessment of human exposure using
biomonitoring has increased in recent years. However, the data obtained
are still insufficient to be useful to regulators and policy makers. This
work, in the context of the Human Biomonitoring for Europe Initiative
(HBM4EU), describes a review of the literature on occupational exposure
to PAHs in Europe, between 2008 and 2022, with the aim of identifying
the advantages and limitations of the various biomarkers of exposure
and/or effect, as well as the missing knowledge to improve regulation in
occupational settings. The results of the analysis of the 42 articles eligible
for inclusion in this review demonstrate that the most used biomarker
of exposure is urinary 1-hydroxypyrene, with the most common biomarkers
of effect being the measurement of oxidative stress and genotoxicity.
Overall, it was noted the need to develop new approaches to samples
and data collection, as well as the appropriate selection of biomarkers
in order to obtain reliable and comparable data in different industrial
sectors. In addition, the application of effect biomarkers contributes to
the identification of high-risk work environments or activities, enabling
measures of risk mitigation and management.Este estudo recebeu financiamento do programa de investigação
e inovação Horizonte 2020 da União Europeia sob o
acordo de subvenção n.º 733032 e recebeu cofinanciamento
das organizações dos autores.info:eu-repo/semantics/publishedVersio
- …