67 research outputs found

    Phase-referenced Interferometry and Narrow-angle Astrometry with SUSI

    Get PDF
    This thesis describes the development of an astrometric facility at the Sydney University Stellar Interferometer (SUSI) with an aim to measure at high precision the relative astrometry of bright close binary stars and ultimately to detect the presence of exoplanets within those binary star systems through observations of the systems’ perturbed motion. At the core of the facility is a new beam combiner that is phase-referenced to an existing primary beam combiner in the visible wave- length regime. The latter provides post-processed fringe-tracking information to the former for fringe stabilization and coherent integration of pre-recorded stellar fringes using newly developed data reduction software. Interference fringe packets of a binary star are recorded alternately; first the fringe packet of the primary, then the secondary, finally back to the primary again. The measurement of the fringe packet separation is facilitated by an air-filled differential delay line and a network of interferometer-based metrology systems. Characterizations and initial astronomical observations carried out with the dual beam combiner setup demonstrated for the first time the success of the dual-star phase-referencing technique in visible (~1μm) wavelengths. The current astrometric precision is larger than 100μas while the long term astrometric accuracy is yet to be characterized. In a parallel development, a complementary observing method using only the primary beam combiner is also demonstrated in this thesis. Relative astrometry of binary stars up to ~0.8” separation with this technique has been demonstrated to have precision of better than 100μas. A simple detection limit analysis based on a list of target binary stars estimates up to two exoplanet detections can be achieved with SUSI if the new astrometric facility attains precision of 10μas while the primary beam combiner operates at its designed peak performance. Finally, one new stellar companion was resolved and a preliminary astrometry for another suspected companion was estimated from the astronomical observation data collected throughout the course of this thesis

    Connective tissue degeneration: Mechanisms of palmar fascia degeneration (Dupuytren’s disease)

    Get PDF
    Dupuytren’s disease is a connective tissue disorder of the hand causing excessive palmar fascial fibrosis with associated finger contracture and disability. The aetiology of the disease is heterogeneous, with both genetic and environmental components. The connective tissue is abnormally infiltrated by myofibroblasts that deposit collagen and other extracellular matrix proteins. We describe the clinical profile of Dupuytren’s disease along with current therapeutic schemes. Recent findings on molecular and cellular parameters that are dysregulated in Dupuytren’s disease, which may contribute to the onset of the disease, and the role of resident inflammation promoting fibrosis, are highlighted. We review recent literature focusing on non-myofibroblast cell types (stem cell-like cells), their pro-inflammatory and pro-fibrotic role that may account for abnormal wound healing response

    Increased chromosomal radiosensitivity in asymptomatic carriers of a heterozygous BRCA1 mutation

    Get PDF
    Background: Breast cancer risk increases drastically in individuals carrying a germline BRCA1 mutation. The exposure to ionizing radiation for diagnostic or therapeutic purposes of BRCA1 mutation carriers is counterintuitive, since BRCA1 is active in the DNA damage response pathway. The aim of this study was to investigate whether healthy BRCA1 mutations carriers demonstrate an increased radiosensitivity compared with healthy individuals. Methods: We defined a novel radiosensitivity indicator (RIND) based on two endpoints measured by the G2 micronucleus assay, reflecting defects in DNA repair and G2 arrest capacity after exposure to doses of 2 or 4 Gy. We investigated if a correlation between the RIND score and nonsense-mediated decay (NMD) could be established. Results: We found significantly increased radiosensitivity in the cohort of healthy BRCA1 mutation carriers compared with healthy controls. In addition, our analysis showed a significantly different distribution over the RIND scores (p = 0.034, Fisher’s exact test) for healthy BRCA1 mutation carriers compared with non-carriers: 72 % of mutation carriers showed a radiosensitive phenotype (RIND score 1–4), whereas 72 % of the healthy volunteers showed no radiosensitivity (RIND score 0). Furthermore, 28 % of BRCA1 mutation carriers had a RIND score of 3 or 4 (not observed in control subjects). The radiosensitive phenotype was similar for relatives within several families, but not for unrelated individuals carrying the same mutation. The median RIND score was higher in patients with a mutation leading to a premature termination codon (PTC) located in the central part of the gene than in patients with a germline mutation in the 5′ end of the gene. Conclusions: We show that BRCA1 mutations are associated with a radiosensitive phenotype related to a compromised DNA repair and G2 arrest capacity after exposure to either 2 or 4 Gy. Our study confirms that haploinsufficiency is the mechanism involved in radiosensitivity in patients with a PTC allele, but it suggests that further research is needed to evaluate alternative mechanisms for mutations not subjected to NMD

    Automated final lesion segmentation in posterior circulation acute ischemic stroke using deep learning

    Get PDF
    Final lesion volume (FLV) is a surrogate outcome measure in anterior circulation stroke (ACS). In posterior circulation stroke (PCS), this relation is plausibly understudied due to a lack of methods that automatically quantify FLV. The applicability of deep learning approaches to PCS is limited due to its lower incidence compared to ACS. We evaluated strategies to develop a convolutional neural network (CNN) for PCS lesion segmentation by using image data from both ACS and PCS patients. We included follow-up non-contrast computed tomography scans of 1018 patients with ACS and 107 patients with PCS. To assess whether an ACS lesion segmentation generalizes to PCS, a CNN was trained on ACS data (ACS-CNN). Second, to evaluate the performance of only including PCS patients, a CNN was trained on PCS data. Third, to evaluate the performance when combining the datasets, a CNN was trained on both datasets. Finally, to evaluate the performance of transfer learning, the ACS-CNN was fine-tuned using PCS patients. The transfer learning strategy outperformed the other strategies in volume agreement with an intra-class correlation of 0.88 (95% CI: 0.83–0.92) vs. 0.55 to 0.83 and a lesion detection rate of 87% vs. 41–77 for the other strategies. Hence, transfer learning improved the FLV quantification and detection rate of PCS lesions compared to the other strategies

    Wound contraction and macro-deformation during negative pressure therapy of sternotomy wounds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Negative pressure wound therapy (NPWT) is believed to initiate granulation tissue formation via macro-deformation of the wound edge. However, only few studies have been performed to evaluate this hypothesis. The present study was performed to investigate the effects of NPWT on wound contraction and wound edge tissue deformation.</p> <p>Methods</p> <p>Six pigs underwent median sternotomy followed by magnetic resonance imaging in the transverse plane through the thorax and sternotomy wound during NPWT at 0, -75, -125 and -175 mmHg. The lateral width of the wound and anterior-posterior thickness of the wound edge was measured in the images.</p> <p>Results</p> <p>The sternotomy wound decreased in size following NPWT. The lateral width of the wound, at the level of the sternum bone, decreased from 39 ± 7 mm to 30 ± 6 mm at -125 mmHg (p = 0.0027). The greatest decrease in wound width occurred when switching from 0 to -75 mmHg. The level of negative pressure did not affect wound contraction (sternum bone: 32 ± 6 mm at -75 mmHg and 29 ± 6 mm at -175 mmHg, p = 0.0897). The decrease in lateral wound width during NPWT was greater in subcutaneous tissue (14 ± 2 mm) than in sternum bone (9 ± 2 mm), resulting in a ratio of 1.7 ± 0.3 (p = 0.0423), suggesting macro-deformation of the tissue. The anterior-posterior thicknesses of the soft tissue, at 0.5 and 2.5 cm laterally from the wound edge, were not affected by negative pressure.</p> <p>Conclusions</p> <p>NPWT contracts the wound and causes macro-deformation of the wound edge tissue. This shearing force in the tissue and at the wound-foam interface may be one of the mechanisms by which negative pressure delivery promotes granulation tissue formation and wound healing.</p

    Screening and diagnostic breast MRI: how do they impact surgical treatment? Insights from the MIPA study

    Get PDF
    Objectives: To report mastectomy and reoperation rates in women who had breast MRI for screening (S-MRI subgroup) or diagnostic (D-MRI subgroup) purposes, using multivariable analysis for investigating the role of MRI referral/nonreferral and other covariates in driving surgical outcomes. Methods: The MIPA observational study enrolled women aged 18–80 years with newly diagnosed breast cancer destined to have surgery as the primary treatment, in 27 centres worldwide. Mastectomy and reoperation rates were compared using non-parametric tests and multivariable analysis. Results: A total of 5828 patients entered analysis, 2763 (47.4%) did not undergo MRI (noMRI subgroup) and 3065 underwent MRI (52.6%); of the latter, 2441/3065 (79.7%) underwent MRI with preoperative intent (P-MRI subgroup), 510/3065 (16.6%) D-MRI, and 114/3065 S-MRI (3.7%). The reoperation rate was 10.5% for S-MRI, 8.2% for D-MRI, and 8.5% for P-MRI, while it was 11.7% for noMRI (p ≤ 0.023 for comparisons with D-MRI and P-MRI). The overall mastectomy rate (first-line mastectomy plus conversions from conserving surgery to mastectomy) was 39.5% for S-MRI, 36.2% for P-MRI, 24.1% for D-MRI, and 18.0% for noMRI. At multivariable analysis, using noMRI as reference, the odds ratios for overall mastectomy were 2.4 (p < 0.001) for S-MRI, 1.0 (p = 0.957) for D-MRI, and 1.9 (p < 0.001) for P-MRI. Conclusions: Patients from the D-MRI subgroup had the lowest overall mastectomy rate (24.1%) among MRI subgroups and the lowest reoperation rate (8.2%) together with P-MRI (8.5%). This analysis offers an insight into how the initial indication for MRI affects the subsequent surgical treatment of breast cancer. Key Points: • Of 3065 breast MRI examinations, 79.7% were performed with preoperative intent (P-MRI), 16.6% were diagnostic (D-MRI), and 3.7% were screening (S-MRI) examinations. • The D-MRI subgroup had the lowest mastectomy rate (24.1%) among MRI subgroups and the lowest reoperation rate (8.2%) together with P-MRI (8.5%). • The S-MRI subgroup had the highest mastectomy rate (39.5%) which aligns with higher-than-average risk in this subgroup, with a reoperation rate (10.5%) not significantly different to that of all other subgroups

    Breast tumor characteristics of BRCA1 and BRCA2 gene mutation carriers on MRI

    Get PDF
    The appearance of malignant lesions in BRCA1 and BRCA2 mutation carriers (BRCA-MCs) on mammography and magnetic resonance imaging (MRI) was evaluated. Thus, 29 BRCA-MCs with breast cancer were retrospectively evaluated and the results compared with an age, tumor size and tumor type matched control group of 29 sporadic breast cancer cases. Detection rates on both modalities were evaluated. Tumors were analyzed on morphology, density (mammography), enhancement pattern and kinetics (MRI). Overall detection was significantly better with MRI than with mammography (55/58 vs 44/57, P = 0.021). On mammography, lesions in the BRCA-MC group were significantly more described as rounded (12//19 vs 3/13, P = 0.036) and with sharp margins (9/19 vs 1/13, P = 0.024). On MRI lesions in the BRCA-MC group were significantly more described as rounded (16/27 vs 7/28, P = 0.010), with sharp margins (20/27 vs 7/28, P < 0.001) and with rim enhancement (7/27 vs 1/28, P = 0.025). No significant difference was found for enhancement kinetics (P = 0.667). Malignant lesions in BRCA-MC frequently have morphological characteristics commonly seen in benign lesions, like a rounded shape or sharp margins. This applies for both mammography and MRI. However the possibility of MRI to evaluate the enhancement pattern and kinetics enables the detection of characteristics suggestive for a malignancy
    • …
    corecore