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Abstract Dupuytren’s disease is a connective tissue disorder
of the hand causing excessive palmar fascial fibrosis with
associated finger contracture and disability. The aetiology of
the disease is heterogeneous, with both genetic and environ-
mental components. The connective tissue is abnormally
infiltrated by myofibroblasts that deposit collagen and other
extracellular matrix proteins. We describe the clinical profile
of Dupuytren’s disease along with current therapeutic
schemes. Recent findings on molecular and cellular
parameters that are dysregulated in Dupuytren’s disease,

which may contribute to the onset of the disease, and the
role of resident inflammation promoting fibrosis, are
highlighted. We review recent literature focusing on
non-myofibroblast cell types (stem cell-like cells), their
pro-inflammatory and pro-fibrotic role that may account for
abnormal wound healing response.
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Introduction

Wound repair and tissue regeneration after injury is widely
accepted to occur during the adult life of large mammals. In
humans, liver regeneration after partial hepatectomy [1] or
gum regeneration [2] is a complete and restorative process.
However, skin wounds, incisions or excisions lead to forma-
tion of scar tissue, which does not resolve for a long term,
thus, the cell-mediated tissue regeneration is incomplete while
scar tissue persists. Embryonic skin wounds lead to scar-free,
completely regenerated tissues, while the majority of mechan-
ical injuries during adult life lead to scar tissue formation [3].
Thus, there might exist a Bco-dependent^ link between tissue
regeneration, cell replenishment and scarring. The early
phases of the wound healing response are dependent on in-
flammation and fibrogenesis, recruitment of platelets, immune
cell and fibroblast invasion, pro-inflammatory cytokine secre-
tion, differentiation of fibroblasts to myofibroblasts and fibrin
clot formation. If the damaging stimuli are repetitive, this will
lead to persistent inflammation; higher levels of interleukins,
tumor necrosis factor alpha (TNFα) and pro-fibrogenic
transforming growth factor beta (TGFβ) and therefore scar-
ring. It has been proposed that the same signals that regulate
scar-free embryonic regeneration also regulate the adult
wound healing response. These cellular processes might be
controlled by the levels and/or localization of those same sig-
nals as well as of the (extra)cellular context, developmental
stage, tissue specificity and repetitive versus acute injury.

In the case of Dupuytren’s disease (DD), although it is not
clear whether its pathogenesis is of mechanical or biochemical
nature, the net result is the same: excess production of matrix
proteins and excessive accumulation of extracellular matrix
(scarring) which changes tissue architecture and causes digital
contraction. Perhapswe should re-evaluateDDnot only as excess
scarring but also as a condition of abnormal tissue regeneration.

In this review, wewill discuss the recent research findings on
DD focusing on the role of non-fibroblastic cell populations
(immune cells, vascular cells or potential stem/progenitor cells).

Clinical Problems of DD and Current Therapeutic
Possibilities

Dupuytren’s disease typically presents in the fourth and fifth
decade of life with thickening and nodule formation of the
affected fascial structures in the hand (Fig. 1a) [4].

Disease progression leads to longitudinally oriented cord-
like structures that limit extension of the involved fingers and
ultimately to metacarpophalangeal (MCP) and interphalangeal
joint (PIP or DIP) contractures [5]. Younger patients often have
a more aggressive disease progression.Most patients with a first
presentation of DD do not have pain or functional disability and
require no treatment. A small extension deficit of the MCP

joints might lead to a positive Btabletop test^ (the hand cannot
lie flat on a tabletop), but few patients experience functional
limitations. The indications for treatment are governed by func-
tional loss and progression and may be subject to local
healthcare system guidelines. An extension deficit greater than
30°may lead to contracture of the accessory collateral ligaments
and the palmar plate of the PIP joint. PIP joint contractures are
generally regarded as more difficult to treat than MCP contrac-
tures because of the secondary joint contracture and weakening
of the extensor mechanism caused by palmar fibrosis.

Awide range of treatment options are available [6] generally
involving mechanical release or excision of excessive fibrotic
tissue. However, recurrence rates are high, ranging from 8 to
66 % (average 33 %) [7]. The surgeon and patient should be
aware that there is no curative treatment for the disease.

Non-operative Treatment

Non-operative treatments such as physiotherapy, splinting and
local radiotherapy may affect disease progression, but long-
term efficacy is unclear.

Minimally Invasive (Percutaneous) Treatment

Minimally invasive (or percutaneous) techniques have be-
come more popular as can be performed in the outpatient
setting. Principally, they involve either collagenase injections
or needle fasciotomy. The goal is to rupture palpable cords
causing digital flexion contracture. Local triamcinolone
acetonide injections do not release DD contractures.

Collagenase is an enzyme solution (derived fromClostridium
histolyticum), which is injected directly into the DD cord. The
cord will weaken due to enzymatic digestion and rupture when
manipulated over the next few days. This technique (FDA-ap-
proved [8]) tends to be effective for MCP contractures, though
with certain complications, and is considered a promising alter-
native for less severe contractures. It is shown to be of particular
value inMCP contractures [9]. However, recurrences are report-
ed and complications of oedema, tendon rupture, pain and
lymphadenopathy are described [5].

Percutaneous needle fasciotomy has been popularized in
recent decades. Cutting the cord with a needle is effective for
solitary central cords in the palm of the hand to release MCP
contractures. More distal, the effectiveness of the release de-
creases and the risk of iatrogenic neurovascular damage in-
creases. Also, high recurrence rates up to 60 % within 3 years
are reported [10]. These less invasive techniques may be a
useful tool in the sicker patients with co-morbidities who cannot
undergo surgery or in those whowant immediate improvement.
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Surgical Techniques

Surgical excision of diseased tissue is called fasciectomy
and can vary from limited to radical excision. For skin
incisions, there are multiple options ranging from midline
Y-V advancement flaps, Z-plasties and zigzag (Bruner-
type) incisions [11]. Radical fasciectomy has high complica-
tion rate without a significantly decreased recurrence rate.
Dermofasciectomy involves removal of the diseased fascia
including the overlying skin. This technique, if used
radically, may reduce long-term recurrence rates. Smaller
or Bfirebreak^ skin grafts probably do not improve
recurrence rates over fasciectomy alone. Partial fasciectomy

is considered the gold standard of surgical treatment for
functionally disabling DD [11].

After removal of the diseased tissue (fasciectomy), addi-
tional procedures might be necessary to correct capsular joint
contractures (PIP joint capsulolysis) or to reconstruct a skin
defect (local skinflap or graft). Postoperative splinting of the
hand may not improve medium-term outcome [5].
Complications of open surgery include delayed wound
healing, skin flap necrosis, digital nerve and vessel injury,
joint stiffness, hematoma and pain issues [12]. Complex
regional pain syndrome (CRPS) can be a devastating compli-
cation of surgery prolonging recovery and requiring long-term
hand therapy support and chronic pain treatments [13].

Fig. 1 a Clinical presentation of
Dupuytren’s disease; preoperative
rigid contracture, surgical incision
during palmar fasciectomy with
prevalent collagen cord, resected
nodule and cord specimen. b
Immune cell types (leukocytes,
monocytes, B and T cells)
residing in nodules from DD
patient material (FACS analysis,
N = 3). c Immunofluorescence of
CD3, alpha smooth muscle actin
(αSMA), tryptase and CD68
expression in Dupuytren’s
nodules. DAPI (nuclei). d Ex vivo
culture of Dupuytren’s nodules
and treatments with mast cell
stabilizer chromolyn.
Immunofluorescence for αSMA
(myofibroblasts) and tryptase
expression (mast cells). e Ex vivo
culture of Dupuytren’s nodules
and treatment with anti-TNFa
antibody (golimumab) and
control IgG. Immunofluorescence
for αSMA (myofibroblasts) and
CD68 expression (macrophages)
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Molecular and Cellular Alterations in DD
Degeneration

The main characteristic of DD is accumulation of extracellular
matrix proteins, which form an abnormal connective tissue of
the palmar fascia mainly containing collagen (mostly collagen
type I and type III) and myofibroblasts [14]. Several studies
have implicated the TGFβ and WNT pathways as drivers of
fibrosis in DD (reviewed in [15–17]). Expression analyses in
DD (by e.g. microarray or q-RT-PCR) [18–27] have shown
that these key pathways are indeed modulated, but do not
always yield the same results: either different set of hits or
different mode of expression (downregulation versus upregu-
lation). Considering the heterogeneity among individuals and
additional factors including biopsy material or comparison
with carpal tunnel-derived fascia palmaris or Bnormal^ adja-
cent tissue fromDD patients, as well as the derivation of tissue
fibroblasts, there is high variability in the outcomes.

A recent genome-wide analysis study using exon arrays
indicated a variety of genes that are differentially expressed
in DD patient fibroblasts compared with control (thigh skin
punch form unaffected individuals) fibroblasts [28]. Among
the list of genes are ECM and tissue re-modelling genes sug-
gesting aberrant matrix synthesis and turnover. Top hits are the
matrix metalloproteinase-1 (MMP-1), MMP-3 and MMP-16,
which have decreased expression in DD fibroblasts, though
other studies have implicated MMP-2 and MMP-14 [29].
MMP-1, MMP-14 and to some extend MMP-2 are collagen-
degrading enzymes, whilst MMP-3 and MMP-16 activate
such enzymes. ADAM15, ADAMTS10, ADAMTS2 and
ADAMTS3 showed increased expression in DD patient sam-
ples. ADAMTS2 and ADAMTS3 are procollagen
propeptidases, involved in collagen biosynthesis. More than
20 collagen genes showed upregulated expression in DD es-
pecially those of the COL1, COL3, COL4 and COL5 cluster.

Regulation of cell surface proteins involved in interaction
with ECM, such as the integrin family, is disrupted, showing
either significantly higher (ITGA11) or lower expression
(ITGA2, ITGA6 and ITGA4). Members of the TGFβ and
WNT pathway are also dysregulated e.g. follistatin, BMP4,
inhibin subunit INHBA, WNT2, frizzled 4, and RSPO3. A
previous genome-wide association study has shown several
genes of the WNT signalling pathway to be dysregulated
(WNT2, WNT4, WNT7B, RSPO2, SFRP4, SULF1) [27].
Further characterization has indicated decreased WNT2 and
increased b-catenin andWNT7B in the DD nodules along with
increased ACTA2 (α-smooth muscle actin, a myofibroblast
marker) and COL1A1 and COL3A1 expression [30••].

Novel players have been implicated in the pathogenesis of
DD such as Wilm’s tumour protein-1 (WT1) [31•] and YAP
[32•]. YAP1, a member of the Hippo pathway, which has re-
cently been shown to promote differentiation of fibroblasts into
myofibroblasts, potentially acts downstream of TGFβ [32•].

microRNAs (miRNAs) are implicated in many biological
processes and have been associated with several diseases;
however, few studies have investigated the potential role of
miRNAs in DD fibrosis. The first microarray studies identi-
fied unique profiles of miRNAs in control versus DD fascia
palmaris [33, 34]. Mosakhani et al. reported that some
miRNAs (e.g. miR29-C, miR29-130b, miR29-101) are pre-
dicted to regulate both the WNT and TGFβ pathways [34].
RNA sequencing analysis of DD and the control fascia mate-
rial shows a unique enrichment of over 70 miRNAs in the DD
and a distinct, smaller subset enriched in control fascia [35].
Target prediction analysis indicated that anti-fibrotic miRNAs
targeting collagen mRNAs, which are present in the normal
fascia, are in fact depleted in DD patient material [35]. Thus,
these studies add to our understanding of DD pathogenesis.

Inflammation and Fibrosis

The majority of knowledge on aspects of the wound healing
response has derived by studies of acute skin injuries. Resident
and inflammatory cells (e.g. mast cells, leukocytes) release
growth factors, proteases and prostaglandins that are essential
for removal of damaged epithelial cells, protection from infec-
tious factors and activation of fibroblasts into myofibroblasts
that form the fibrous scar tissue and have mechanical properties
to mediate wound closure. Although acute tissue injury is re-
solved completely, repetitive chronic injury, the addition of
other factors such as age or diabetes or chronic inflammation
have the potential to interfere with the correct remodelling of
tissue and are contributing factors to persistent scarring (e.g.
hypertrophic scars) [36, 37]. For instance, macrophage and
leukocyte-depleted transgenic mice (PU.1 null) have rapid skin
wound repair with reduced fibrosis [38]. The mechanism by
which inflammation influences fibrosis remains elusive.
Similarly to skin wound repair, connective tissue diseases such
as DD or Peyronie’s disease are likely to be affected by inflam-
mation. Despite the first study that reported macrophages and
leukocytes around the DD nodules [39], the role of immune
cells in DD fibrosis had not been characterized until recently. A
limitation that accounts for this was the overlapping recognition
of fibroblasts by anti-macrophage antibodies (Mac-3, CD68,
MHC class II, CD45), which may have led to misidentification
of pure fibroblast and macrophage cell populations [40].

High levels of inflammatory cytokines were detected in tis-
sue from DD patients along with CD68+ monocytes and clas-
sically activated M1 (pro-inflammatory) and alternatively acti-
vated M2 (regenerative) macrophages [41]. The same study
showed that pro-inflammatory factor TNFα promotes DD fi-
brosis, although IL-6 and IL-1b did not have the same effect,
via activation of WNT signalling [41]. Bianchi et al. have also
reported increased expression of IL-6 and IL-1b cytokines in
DD as well as presence of CD68-positive cells [42]. The pro-
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fibrogenic factor TGFβ, released by platelets, fibroblasts and
macrophages, also mediates inflammation-related signalling
(such as p38 activation) also in DD fibroblasts [45, 44].

Our unpublished observations demonstrate the presence of
a small number of immune cell types (leukocytes, monocytes,
B and T cells) residing in nodules from DD patient material
(Fig. 1b). Immunofluorescence of fixed material immediately
after surgical removal of nodules confirmed the presence of
CD3-positive T cells along with CD68-positive macrophages
(Fig. 1c) similar to the study of Verjee et al. In addition, we
detected tryptase, a well-known specific alpha marker of mast
cells (Fig. 1c).Mast cells are granulated tissue-resident cells of
the innate immunity, best known for their involvement in al-
lergic disorders, but also playing a role in several autoimmune
conditions [45], where they can have both pro- and anti-in-
flammatory/immunomodulatory effects [46, 47]. In the con-
text of Dupuytren’s inflammation, mast cell activation could
contribute to the modulation of the inflammatory response
leading to fibrosis. For example, tryptase-initiated signalling
influences neutrophil and monocyte recruitment, muscle tis-
sue regeneration [48], fibroblast proliferation [49, 50] and
activation of latent TGFβ [51]. Interestingly, the number of
mast cells has been shown to be increased in Dupuytren’s
contracture in comparison with normal fascia tissue [52].
Inhibition of mediator release by the mast cell stabilizer com-
pound chromolyn (chromoglicic acid) is used as anti-allergy
treatment for asthma, conjunctivitis and food allergies [53].
As a proof of principle, we tested the effect of inhibition of
mast cells ex vivo and their potential influence upon fibro-
blasts on our ex vivo human tissue culture method [54••, 55].
We have exposed DD nodule-derived slices to chromolyn for
72 h; our preliminary data suggest a decrease in tryptase and
alpha smooth muscle actin (αSMA) expression (Fig. 1d). Co-
labelling of CD68 and αSMA in DD specimens indicates the
presence of macrophages around the microvessel clusters
(Fig. 1e, left panel), while ex vivo treatment of tissue with
neutralizing TNFα antibody (golimumab) has little effect at
the lowest concentration (1 μg/ml) but leads to reduced CD68
expression when used at a higher concentration (10 μg/ml).

A recent study has characterized the immune response in a
large subset of DD specimens and, similar to our unpublished
observations, has detected the infiltration of DD tissue by sev-
eral immune cells. After extensive characterization of Tcells and
cytokine profiling, the authors suggest that T cells may contrib-
ute to the development of DD possibly via (auto)antigen-driven
processes possibly due to microvascular damage [56••].

Overall, the fibrotic response in DD is being recognized as
an immune-mediated response, with an important involve-
ment of different immune cells. Our preliminary observations
suggest that mast cells could also be involved in the inflam-
matory response leading to the development of fibrosis, an
intriguing observation warranting additional investigations
on the role of mast cells and other immune cells in DD.

Contribution of Stem/Progenitor Cells in DD

The field of DD research is mainly focused on the mecha-
nisms of deregulated proliferation of myofibroblasts and their
matrix-producing properties. However, this may be at the end
stage of the disease and not necessarily during its onset. The
switch to excessive fibrosis may be indeed controlled by other
cell types such as the infiltrating immune cells, vascular
smooth cells, endothelial cells, pericytes [57], fibrocytes orig-
inating from the bone marrow or possibly multilineage pro-
genitors that give rise to myofibroblasts [58] (mesenchymal
stem/stromal cells). Pericytes, the endothelium-covering cells,
have been attributed with stem cell properties in several or-
gans [59], which is likely to be the case also in DD fibrosis.
Vessel structures that contain high levels of laminins, a key
basal membrane component of the connective tissue, facilitate
proliferation of myofibroblasts evident by proliferating cen-
tres in the vicinity of these vessels [60••]. Endothelial cell and
mesenchymal stem cell (MSC)-enriched protein CD105 (type
III receptor, endoglin) has been found to be expressed near
these proliferation centres. Vessel structures in DD specimens
appear abnormally large or with fused vessels and are located
distinctly from the myofibroblast-enriched area. It is highly
likely that these structures are sweat glands from subcutane-
ous dermis that seem to be encapsulated within the fibrotic
nodules as also suggested by Viil et al. The presence of stem
cells has been reported in the vicinity of cutaneous sweat
glands [61]; thus, we hypothesize that similar stem/progenitor
cell populations may exist in DD. Given the high proliferative
properties of these myofibroblasts, such an assumption seems
probable; however, detailed investigations are needed.

Cell replacement treatments usingMSCs for organ fibrosis,
such as liver [62], lung [63] or heart [64], have been attempted
in many studies in order to improve cell replenishment and
tissue regeneration. MSCs are multipotent stromal cells which
differentiate into distinct cell lineages: osteoblasts,
chondrocytes, adipose cells, muscle cells as well as tenocytes,
skin cells and differentiated stromal cells of connective tissue
(fibroblast phenotype) [65]. However, the ability of MSCs to
give rise to fibroblasts is often overlooked, along with the
subsequent effects on exacerbating instead of ameliorating
fibrosis. MSCs may differentiate into highly specified fibro-
blastic populations such as inflammatory fibroblasts or mye-
loid fibroblasts. In DD, palmar fascia tissue recent studies
have reported and characterized the presence of resident
MSCs or adipose stem cells [66••, 67••], or a stem cell-like
subpopulation of Thy1 (CD90)-positive cells has been identi-
fied [68••]. Cell-cell contact of DD myofibroblasts with adi-
pose stem cells resulted in inhibition of contractility and
smooth muscle actin expression of myofibroblasts [69••]. A
recent study has identified an increased resident and circulat-
ing fibrocyte population in DD tissue compared to control
tissue [70••]. Fibrocyte characterization showed that these
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cells are of the mononuclear cell lineages sharing properties
with fibroblasts and mesenschymal stromal cells (CD45RO,
25F9 and MRP8/14). Treament of fibrocytes with serum am-
yloid P and FDA-approved Xiapex collagenase inhibited the
expansion of fibrocytes in vitro, a promising finding regarding
the extended use of Xiapex [70••].

Conclusions

In this review, we have discussed the clinical problems associ-
ated with DD and the current therapeutic tools currently avail-
able. In addition, we have reviewed recent publications on stud-
ies regarding novel regulator genes or cellular processes in-
volved in DD pathogenesis. We have discussed how fibrosis
and tissue regeneration are inter-dependent processes, for in-
stance deregulated tissue regeneration or Bre-cellularization^
leads to overstimulation of fibrosis. One of the underlying fac-
tors regulating fibrosis and regeneration is inflammation, while
the role of inflammation in DD is only beginning to be
unravelled. The latest research studies introduce the possibility
that DD may be an autoimmune disease, which however re-
quires more investigation. Given the high demand for safe and
effective anti-fibrotic drugs for DD, we propose that novel com-
pounds that inhibit both myofibroblasts and immune cells
(mast, B and T cells) or a combination of anti-fibrotic and
anti-inflammatory compounds are promising candidates.
From a different point of view, we discuss the possibility of
resident stem/progenitor cells to be a pool for myofibroblasts
or inhibit their fibrogenic activity based on recent publications.
The potential of MSC differentiation to the fibroblast lineage or
stromal precursor cells has not yet been characterized in DD.
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