325 research outputs found

    Coronary CT angiography features of ruptured and high-risk atherosclerotic plaques: Correlation with intra-vascular ultrasound

    Get PDF
    BACKGROUND: Features of ruptured and high-risk plaque have been described on coronary computed tomography angiography (coronary CTA), but not systematically assessed against intravascular ultrasound (IVUS). We examined the ability of coronary CTA to identify IVUS defined ruptured plaque and Virtual Histology Intravascular Ultrasound (VH-IVUS) defined thin-cap fibroatheroma (TCFA). METHODS: Sixty-three patients (32 with acute coronary syndrome and 31 with stable angina) underwent coronary CTA, IVUS and VH-IVUS. Plaque rupture on CTA was defined as intra-plaque contrast and its frequency compared with IVUS-defined plaque rupture. We then examined the relationship of conventional coronary CTA high-risk features (low attenuation plaque, positive remodeling, spotty calcification and the Napkin-Ring sign) in VH-IVUS-defined TCFA. We compared these with a novel index based on quantifying the ratio of necrotic core to fibrous plaque using x-ray attenuation cut-offs derived from the relationship of plaque to luminal contrast attenuation. RESULTS: Of the 71 plaques interrogated with IVUS, 39 were ruptured. Coronary CTA correctly detected 13-ruptured plaques with 3 false positives giving high specificity (91%) but low sensitivity (33%). None of the conventional coronary CTA high-risk features were significantly more frequent in the higher-risk (VH-IVUS defined thin-cap) compared with thick-cap fibroatheroma. However, the new index (necrotic core/fibrous plaque ratio) was higher in thin-cap (mean 0.90) vs. thick-cap fibroatheroma (mean 0.59), p < 0.05. CONCLUSIONS: Compared with intravascular ultrasound, coronary CTA identifies ruptured plaque with good specificity but poor sensitivity. We have identified a novel high-risk feature on coronary CTA (necrotic core/fibrous plaque ratio that is associated with VH-IVUS defined-TCFA.Supported by a British Heart Foundation grant FS/10/025/2819

    The sharpeness of some cluster set results

    Get PDF
    We show that a recent cluster set theorem of Rung is sharp in a certain sense. This is accomplished through the construction of an interpolating sequence whose limit set is closed, totally disconnected and porous. The results also generalize some of Dolzenko's cluster set theorems

    CFD modeling and performance evaluation of multipass solar air heaters

    Get PDF
    This article investigates the impacts of flow configurations on the thermal performance of a solar heater system. Recycled aluminum cans (RACs) have been utilized as turbulators with a double pass single duct solar air collector. The CFD software of COMSOL Multiphysics V5.3a is used to model three designs: Cocurrent (model A), countercurrent (model B), and U-shape (model C). The numerical results reveal that the U-shape design offers a greater thermal performance of 5.4% and 6.5%, respectively, compared with the cocurrent and countercurrent flow models. Furthermore, an outdoor experiment is performed based on the numerical modeling of flow configurations. The experimental setup is examined for three configurations of model C, namely, solar air heater (SAH) without RAC model C-I (plain model), SAH with in-line RAC layout (model C-II), and SAH with staggered RAC layout (model C-III). We found the double pass single duct solar air collector (model C) design is in a good agreement with the experimental data, and model C-III has a better thermal efficiency of 60.2%, compared to those of model C-II, 53.1%, and model C-I, 49.4%

    Pulsatile blood flow through a constricted porous artery

    Get PDF
    In this paper a speculative study of an incompressible Newtonian blood flow through a constricted porous channel and pulsatile nature is inspected. Porosity parameter λ is incorporated in the momentum equation. Governing nonlinear differential equations are numerically evaluated by employing the perturbation method technique for a very small perturbation parameter ε 1 such that ε ≠ 0 and with conformable boundary conditions. Numerical results of the flow velocity profile and volumetric flow rate have been derived numerically and detailed graphical analysis for different physical parameters porosity, Reynolds number and stenosis has been presented. It is found that arterial blood velocity is dependent upon all of these factors and that the relationship of fluid velocity and flow is more complex and nonlinear than heretofore generally believe. Furthermore the flow velocity enhanced with Reynolds number, porosity parameter and at maximum position of the stenosis/constriction

    Energy-absorption buildup factors and specific absorbed fractions of energy for bioactive glasses

    Get PDF
    In the present work, effective atomic numbers Zeff, energy-absorption buildup factors EABF and specific absorbed fractions of energy (Φ) for different bioactive glasses have been calculated in the present work. Geometric-Progression (G-P) fitting method was used for computation of EABF. The computed EABF is used to estimate the values of Φ. It is shown that the EABF and Φ are dependent on Zeff and mean free path. In addition, EABF and Φ were the largest for S4 and S7.The results in this work could be useful in choosing a suitable type of these glasses which in turn are able to resist possible radiation damages at human body and to determine the thickness and shape of the bioactive glasses needed

    A single-source precursor approach to solution processed indium arsenide thin films

    Get PDF
    This paper reports the synthesis of the novel single-source precursor, [{(MeInAstBu)3}2(Me2InAs(tBu)H)2] and the subsequent first report of aerosol-assisted chemical vapour deposition of InAs thin films. Owing to the use of the single-source precursor, highly crystalline and stoichiometric films were grown at a relatively low deposition temperature of 450 °C. Core level XPS depth profiling studies showed some partial oxidation of the film surface, however this was self-limiting and disappeared on etch profiles. Valence band XPS analysis matched well with the simulated density of state spectrum. Hall effect measurements performed on the films showed that the films were n-type with promising resistivity (3.6 × 10−3 Ω cm) and carrier mobility (410 cm2 V−1 s−1) values despite growth on amorphous glass substrates

    Low-Temperature Phase Transitions in a Soluble Oligoacene and Their Effect on Device Performance and Stability

    Get PDF
    The use of organic semiconductors in high-performance organic field-effect transistors requires a thorough understanding of the effects that processing conditions, thermal, and bias-stress history have on device operation. Here, we evaluate the temperature dependence of the electrical properties of transistors fabricated with 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene, a material that has attracted much attention recently due to its exceptional electrical properties. We have discovered a phase transition at T = 205 K and discuss its implications on device performance and stability. We examined the impact of this low-temperature phase transition on the thermodynamic, electrical, and structural properties of both single crystals and thin films of this material. Our results show that while the changes to the crystal structure are reversible, the induced thermal stress yields irreversible degradation of the devices

    Observational Analysis of the Influence of Medical Marijuana Use on Quality of Life in Patients

    Get PDF
    Introduction: A significant gap exists in the understanding and utilization of medical marijuana and its effects on a patient’s quality of life. This is largely attributed to Cannabis’ sp. Schedule 1 classification, which has impeded the scientific investigation of its effects on the endocannabinoid system (ECS) and quality of life. Additionally, conflicting results from previous studies highlight the need for more research to provide guidance to both patients and clinicians regarding the therapeutic potential of medical marijuana. Methods: Patients over 18 years of age who were members of the Pennsylvania Medical Marijuana Program (PAMMP) were recruited from regulated Pennsylvania medical marijuana dispensaries. Eligible patients were enrolled through informed consent, following a study design that received approval from the LECOM Institutional Review Board (IRB). Over 90 days, participants were remotely administered an electronic survey every 30 days to collect medical marijuana use patterns and assess changes in quality of life. Results: Of the 103 participants who completed the study, significant improvements were observed in physical and social functioning, emotional well-being, and energy levels within the first 30 days. Participants reported significant decreases in emotional limitations, fatigue, and pain levels. Notably, participants who used inhaled or vaped products (defined as vape cartridges and concentrates) were younger and exhibited a significantly higher increase in emotional well-being scores compared to those who used flower products (defined as dry leaf only). Participants who consumed medical marijuana for opioid use demonstrated significantly higher THC consumption compared to those seeking treatment for anxiety, chronic pain, or inflammatory bowel disease (IBD). Improvements in the first 30 days also remained constant for the remainder of the study. Discussion: This study contributed valuable insights into the effects of medical marijuana on quality of life and highlighted potential benefits associated with its use. Moreover, ongoing research aims to assess the observed sustained improvements beyond 90 days, investigating potential long-term trends. While further research is needed to explore the underlying mechanisms of action and long-term effects of medical marijuana, clinicians and patients can gain a better understanding of medical marijuana’s therapeutic potential, enabling more informed decisions regarding its use in clinical settings

    Machine-Learning-Based LOS Detection for 5G Signals with Applications in Airport Environments

    Get PDF
    The operational costs of the advanced Air Traffic Management (ATM) solutions are often prohibitive in low- and medium-sized airports. Therefore, new and complementary solutions are currently under research in order to take advantage of existing infrastructure and offer low-cost alternatives. The 5G signals are particularly attractive in an ATM context due to their promising potential in wireless positioning and sensing via Time-of-Arrival (ToA) and Angle-of-Arrival (AoA) algorithms. However, ToA and AoA methods are known to be highly sensitive to the presence of multipath and Non-Line-of-Sight (NLOS) scenarios. Yet, LOS detection in the context of 5G signals has been poorly addressed in the literature so far, to the best of the Authors’ knowledge. This paper focuses on LOS/NLOS detection methods for 5G signals by using both statistical/model-driven and data-driven/machine learning (ML) approaches and three challenging channel model classes widely used in 5G: namely Tapped Delay Line (TDL), Clustered Delay Line (CDL) and Winner II channel models. We show that, with simulated data, the ML-based detection can reach between 80% and 98% detection accuracy for TDL, CDL and Winner II channel models and that TDL is the most challenging in terms of LOS detection capabilities, as its richness of features is the lowest compared to CDL and Winner II channels. We also validate the findings through in-lab measurements with 5G signals and Yagi and 3D-vector antenna and show that measurement-based detection probabilities can reach 99–100% with a sufficient amount of training data and XGBoost or Random Forest classifiers.publishedVersionPeer reviewe

    Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging

    Get PDF
    Citation: Ablikim, U., Bomme, C., Xiong, H., Savelyev, E., Obaid, R., Kaderiya, B., . . . Rolles, D. (2016). Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging. Scientific Reports, 6, 8. doi:10.1038/srep38202An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C2H2Br2). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. The experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model
    corecore