659 research outputs found

    Aiding first incident responders using a decision support system based on live drone feeds

    Get PDF
    In case of a dangerous incident, such as a fire, a collision or an earthquake, a lot of contextual data is available for the first incident responders when handling this incident. Based on this data, a commander on scene or dispatchers need to make split-second decisions to get a good overview on the situation and to avoid further injuries or risks. Therefore, we propose a decision support system that can aid incident responders on scene in prioritizing the rescue efforts that need to be addressed. The system collects relevant data from a custom designed drone by detecting objects such as firefighters, fires, victims, fuel tanks, etc. The drone autonomously observes the incident area, and based on the detected information it proposes a prioritized based action list on e.g. urgency or danger to incident responders

    Primary leptomeningeal oligodendrogliomatosis

    Get PDF
    Primary leptomeningeal oligodendrogliomas (PLOs) are rare intracranial malignancies where tumors grow in the subarachnoid space without an obvious connection to the brain or spinal cord parenchyma. Adding to the three previously reported cases of PLO with no parenchymal involvement we report a fourth case of the same in this paper in a 50-year-old woman presenting with unrelenting headaches. CT scan of her head revealed hydrocephalus and MRI revealed diffuse enhancement of her leptomeninges throughout her brain and spine, prominent over the basilar region. Biopsy obtained using a frameless stereotactic biopsy showed sharply defined cell borders, clear cytoplasm, and rounded nuclei consistent with an oligodendroglioma. Our case suggests that PLO can mimic diffuse forms of granulomatous meningitis and should be suspected in patients that clinically and radiographically present like granulomatous meningitis but without blood or CSF markers for the same

    Anti-müllerian hormone is not associated with cardiometabolic risk factors in adolescent females

    Get PDF
    <p>Objectives: Epidemiological evidence for associations of Anti-Müllerian hormone (AMH) with cardiometabolic risk factors is lacking. Existing evidence comes from small studies in select adult populations, and findings are conflicting. We aimed to assess whether AMH is associated with cardiometabolic risk factors in a general population of adolescent females.</p> <p>Methods: AMH, fasting insulin, glucose, HDLc, LDLc, triglycerides and C-reactive protein (CRP) were measured at a mean age 15.5 years in 1,308 female participants in the Avon Longitudinal Study of Parents and Children (ALSPAC). Multivariable linear regression was used to examine associations of AMH with these cardiometabolic outcomes.</p> <p>Results: AMH values ranged from 0.16–35.84 ng/ml and median AMH was 3.57 ng/ml (IQR: 2.41, 5.49). For females classified as post-pubertal (n = 848) at the time of assessment median (IQR) AMH was 3.81 ng/ml (2.55, 5.82) compared with 3.25 ng/ml (2.23, 5.05) in those classed as early pubertal (n = 460, P≤0.001). After adjusting for birth weight, gestational age, pubertal stage, age, ethnicity, socioeconomic position, adiposity and use of hormonal contraceptives, there were no associations with any of the cardiometabolic outcomes. For example fasting insulin changed by 0% per doubling of AMH (95%CI: −3%,+2%) p = 0.70, with identical results if HOMA-IR was used. Results were similar after additional adjustment for smoking, physical activity and age at menarche, after exclusion of 3% of females with the highest AMH values, after excluding those that had not started menarche and after excluding those using hormonal contraceptives.</p> <p>Conclusion: Our results suggest that in healthy adolescent females, AMH is not associated with cardiometabolic risk factors.</p&gt

    Finite-gap equations for strings on AdS_3 x S^3 x T^4 with mixed 3-form flux

    Full text link
    We study superstrings on AdS_3 x S^3 x T^4 supported by a combination of Ramond-Ramond and Neveu-Schwarz-Neveu-Schwarz three form fluxes, and construct a set of finite-gap equations that describe the classical string spectrum. Using the recently proposed all-loop S-matrix we write down the all-loop Bethe ansatz equations for the massive sector. In the thermodynamic limit the Bethe ansatz reproduces the finite-gap equations. As part of this derivation we propose expressions for the leading order dressing phases. These phases differ from the well-known Arutyunov-Frolov-Staudacher phase that appears in the pure Ramond-Ramond case. We also consider the one-loop quantization of the algebraic curve and determine the one-loop corrections to the dressing phases. Finally we consider some classical string solutions including finite size giant magnons and circular strings.Comment: 44 pages, 3 figures. v2: references and a discussion about perturbative results adde

    Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the Coronary Artery Risk Development in Young Adults Study.

    Get PDF
    Leukocyte telomere length, a marker of immune system function, is sensitive to exposures such as psychosocial stressors and health-maintaining behaviors. Past research has determined that stress experienced in adulthood is associated with shorter telomere length, but is limited to mostly cross-sectional reports. We test whether repeated reports of chronic psychosocial and financial burden is associated with telomere length change over a 5-year period (years 15 and 20) from 969 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a longitudinal, population-based cohort, ages 18-30 at time of recruitment in 1985. We further examine whether multisystem resiliency, comprised of social connections, health-maintaining behaviors, and psychological resources, mitigates the effects of repeated burden on telomere attrition over 5 years. Our results indicate that adults with high chronic burden do not show decreased telomere length over the 5-year period. However, these effects do vary by level of resiliency, as regression results revealed a significant interaction between chronic burden and multisystem resiliency. For individuals with high repeated chronic burden and low multisystem resiliency (1 SD below the mean), there was a significant 5-year shortening in telomere length, whereas no significant relationships between chronic burden and attrition were evident for those at moderate and higher levels of resiliency. These effects apply similarly across the three components of resiliency. Results imply that interventions should focus on establishing strong social connections, psychological resources, and health-maintaining behaviors when attempting to ameliorate stress-related decline in telomere length among at-risk individuals

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Circadian Control of Dendrite Morphology in the Visual System of Drosophila melanogaster

    Get PDF
    In the first optic neuropil (lamina) of the fly's visual system, monopolar cells L1 and L2 and glia show circadian rhythms in morphological plasticity. They change their size and shape during the day and night. The most pronounced changes have been detected in circadian size of the L2 axons. Looking for a functional significance of the circadian plasticity observed in axons, we examined the morphological plasticity of the L2 dendrites. They extend from axons and harbor postsynaptic sites of tetrad synaptic contacts from the photoreceptor terminals.The plasticity of L2 dendrites was evaluated by measuring an outline of the L2 dendritic trees. These were from confocal images of cross sections of L2 cells labeled with GFP. They were in wild-type and clock mutant flies held under different light conditions and sacrified at different time points. We found that the L2 dendrites are longest at the beginning of the day in both males and females. This rhythm observed under a day/night regime (LD) was maintained in constant darkness (DD) but not in continuous light (LL). This rhythm was not present in the arrhythmic per(01) mutant in LD or in DD. In the clock photoreceptor cry(b) mutant the rhythm was maintained but its pattern was different than that observed in wild-type flies.The results obtained showed that the L2 dendrites exhibit circadian structural plasticity. Their morphology is controlled by the per gene-dependent circadian clock. The L2 dendrites are longest at the beginning of the day when the daytime tetrad presynaptic sites are most numerous and L2 axons are swollen. The presence of the rhythm, but with a different pattern in cry(b) mutants in LD and DD indicates a new role of cry in the visual system. The new role is in maintaining the circadian pattern of changes of the L2 dendrite length and shape
    corecore