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Abstract. In case of a dangerous incident, such as a fire, a collision or
an earthquake, a lot of contextual data is available for the first incident
responders when handling this incident. Based on this data, a commander
on scene or dispatchers need to make split-second decisions to get a
good overview on the situation and to avoid further injuries or risks.
Therefore, we propose a decision support system that can aid incident
responders on scene in prioritizing the rescue efforts that need to be
addressed. The system collects relevant data from a custom designed
drone by detecting objects such as firefighters, fires, victims, fuel tanks,
etc. The drone autonomously observes the incident area, and based on
the detected information it proposes a prioritized based action list on
e.g. urgency or danger to incident responders.
This paper presents the architecture of the framework and a prototype
implementation and evaluation of a decision support system, responsible
for digesting and prioritizing the large amount of contextual data cap-
tured at an incident site. The evaluation of the decision support system
shows that the proposed solution works accurately in supporting incident
responders in providing a sorted overview of the actions needed in real-
time, with an average response time of 334ms on a less powerful device
and 263ms on a powerful device equipped with a GPU.

Keywords: Disaster Management · Recommendation Systems · Deci-
sion Analysis and Decision Support Systems

1 Introduction

In 2013, a train carrying chemical products derailed in Wetteren, Belgium [23].
Because of this derailment, chemical products contained in the wagons exploded,
causing an inferno and the release of toxic substances in the air. The fire depart-
ment initially used water to extinguish the fire, resulting in a chemical reaction
with the released contents and the spread of toxic water through the sewers of
a nearby city. This disaster caused one death and several injuries, all of them



intoxicated by the toxic gases rising from the sewer system. If the fire depart-
ment had known that the wagons contained chemical products, they would have
used foam instead of water to douse the flames, resulting in no spreading of toxic
water through the sewers and most likely fewer victims.

To prevent such scenarios in the future, we propose a solution in which a
drone supports first incident responders. The drone can fly autonomously to
the incident area and circles around the incident area multiple times to scan
and analyze it by detecting different relevant objects. This results in a more
rapid and better overview of the incident as a whole and, when connected to an
automated decision support system, also aids in making split second decisions
regarding evacuation, on-scene toxic materials (through object recognition), etc.
The main goal of the proposed system is to save lives. The automated decision
support is responsible for capturing the huge amount of context and historical
data available during such an event and analyzing it, in order to provide inci-
dent responders on scene with a better overview of the situation, and to offer
dangerous situation warnings and an intervention action list ordered according
to urgency. The actual decisions however are made by incident responders and
the presented system therefore serves as a decision support system.

In this paper, we primarily focus on the design of a novel decision support
process, which takes as input different types of object detections provided by
airborne drones and other contextual information (e.g. weather information,
database information about gas pipelines).Afterwards we evaluate this decision
support process to check whether it can provide real-time decisions in case of
an incident. The remainder of this paper is organized as follows. In Section II
related work is discussed, followed by an overview of the overall architecture in
Section III. In Section IV the decision support system is explained in-depth and
subsequently evaluated in Section V. Finally, conclusions and avenues for future
work are provided in Section VI.

2 Related Work

Several publications focus on how to improve the Emergency Response Manage-
ment (ERM) with IT solutions. Banjeree et al. [5] for example describe web and
mobile applications that are developed for disaster management. They conclude
that many applications and frameworks guarantee better critical communication,
situational awareness, resource overview and management, and improved deci-
sion support. Because every solution focuses on one of previous improvements,
the authors propose a unified framework to combine the different solutions. Their
disaster management focuses on alerting civilians in case of a greater event. Our
solution on the other hand focuses on alerting incident responders based on de-
tailed real-time context-information (stemming a.o. from a custom autonomous
drone), and considering the role of the incident responder, e.g. a firefighter may
need to be in closer vicinity of a live fire than a paramedic.

Concerning chemical disasters, Dotson et al. [10] propose a framework for
detection and decision making. The decision making is based on existing rule



databases in combination with learning from previous incidents. In our paper, we
use a deep neural network for detection and decision making instead of existing
rule databases. The approach utilized by Dotson et al. for prioritizing detections
and decisions could be useful in eventual further work.

Chen et al. [8] discuss different approaches on how ERM can be improved.
They propose a non-IT framework focused on better communication and better
situational overview. The target of their framework is that other researchers use
it to improve ERM, by understanding the overarching requirements for coordi-
nation design and implementation. The conclusions from this work summarize
different aspects that are needed when building a whole ERM system and has
been marked for future work.

The department of Homeland Security built a middleware platform, called
Unified Incident Command and Decision Support (UICDS), described by Morentz
et al. [18]. UICDS collects data from both governmental and commercial incident
management technologies, combines these and creates a role-based, situational
awareness information sharing platform. UICDS primarily focuses on alerting
civilians in case of specific events to achieve better risk prevention, protection,
response and recovery. The proposed deployment methods of UICDS can be used
to deploy our decision support system and the UICDS middleware platform gives
a good overview of new components that can be added.

Other approaches for supporting incident responders are based on the use of
crowd sourcing information, described in Laskey [16] and Abu-Elkheir et al. [4].
The use of pictures, videos and status updates on social media can offer insights
to first incident responders during an emergency event. Both solutions propose a
way to implement a crowd sourcing platform, but the main bottleneck with this
approach is to verify which data is applicable and which data must be discarded,
such as outdated information or fake news. Crowd sourcing information can
provide an additional, highly interesting source of information for our decision
support system, and has been marked for further research.

In Kotsiantis [15] several classification methods based on machine learning
are compared and explained. Table 1 gives a simplified overview of the different
features of a selection of learning techniques. It is clear that a Neural Network
(NN) and a Support Vector Machine (SVM) have better accuracy, but slower
training times compared with a Rule Learner (RL) and a Decision Tree (DT). An
important difference between SVM methods and the others is that SVM methods
are binary, and thus in the case of multi-class problem one must reduce the
problem to a set of multiple binary classification problems. Important features
for the described decision support system in this paper are accuracy in general,
the speed of a decision, the attempts of incremental learning (e.g. the system
can learn from different datasets with the intent to get better each time) and the
possibility to handle a multi-class problem (a situation needs to be classified into
a clear, warning or danger situation). The decision support system proposed in
this paper extends these approaches in order to design, prototype and evaluate
a decision-making framework supporting incident responders in making split-
second decisions in case of an emergency.



It is clear research into decision support systems for incident response is
ongoing. On the first hand however some solutions are very incident specific, e.g.
for chemical disasters while on the other hand other solutions are focusing on
alerting nearby civilians in case of a large incident. Our decision support system
focuses on alerting and aiding incident responders on site during a generic event
with a potential to plug in incident-specific and civilian alerting solutions.

Table 1: Overview of different learning algorithms. (**** stars represent the best and
* star represent the worst performance)

Decision
Trees [17, 19,

24]

Neural
Networks

[17]

Support Vector
Machines

[7, 9]

Rule
Learners
[11–13]

Accuracy in
general

** *** **** **

Speed of
learning

*** * * **

Speed of
decision

**** **** **** ****

Tolerance to
missing values

*** * ** **

Tolerance to highly
interdependent

attributes

** *** *** **

Danger of
overfitting

** * ** **

Attempts of
incremental learning

** *** ** *

Solving multi-class
problems

**** **** ** ****

3 Architecture Overview

Figure 1 provides a general overview of the system. A custom-built drone, visual-
ized in Figure 2, is used, equipped with both a FLIR BOSON thermal camera [1]
and two IMX274 4K cameras [2] used for stereoscopic imaging. The drone au-
tonomously detects all relevant objects in the area, such as the emergency work-
ers, the location of the fire, dangerous objects (e.g. barrels containing explosive
fluids) etc. The image processing happens on the drone itself, using a Nvidia
Jetson TX2 GPU board, and object detection and localization is implemented
using the methods presented in our previous work [21, 22].
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Fig. 1: General overview of the autonomous drone-based decision support system for
incident response.

Fig. 2: General overview of the custom build drone.



The contextual information captured by the drone is forwarded to the back-
end for further processing, together with the original video feed and additional
drone telemetry (location, heading, altitude, battery level, etc.). The back-end
analyses this data in real time, using a decision support system. Alongside cur-
rent feeds, historical data from previous interventions is considered. Furthermore,
these data feeds are stored in the back-end for future use (e.g. to learn from mis-
takes made while dealing with a crisis situation and potentially introduce new
rules avoiding such situations in the future). Decision making processing on the
drone itself is not recommended as object recognition and communication al-
ready demand a lot of processing power / energy on the drone causing an extra
stress on the battery which will results in shorter flight time. When the decision
support system detects a dangerous situation, e.g. when a fire is located near
explosive materials, an alert is generated and forwarded to all emergency workers
located in the danger zone.

The back-end also provides a user-friendly dashboard in which all identified
objects are visualized on a map, together with other relevant information such
as weather information / forecast, gas pipelines and potential alerts or warnings.
The location of the drone together with video feeds and overall status such as
battery level, altitude, heading, etc. can be optionally visualized on the dash-
board. The web-technology based dashboard also shows the flight path of the
drone which can be changed by the user during flight. A screenshot of the dash-
board with detections, a gas pipeline, drone location and potential decisions is
shown in Figure 3. The complete dashboard can be used within a control room
setting, or it can be displayed on a tablet used by the supervisor located at the
emergency site.

In the remainder of this paper, we will focus on the design, prototype imple-
mentation and evaluation of the decision support system.

4 Decision Support - TensorFlow

The decision support system is implemented using TensorFlow [3], an open-
source, state-of-the-art machine learning framework created by Google. Tensor-
Flow contains a wide range of functionality, and can therefore be used in a
wide area of applications, but is mainly designed for creating a Deep Neural
Network (DNN). The reason to opt for a DNN instead of the other proposed
learning methods in Section 2 is related to the specific use case in this paper. The
use case under investigation requires an accurate and fast approach of a multi-
class problem that can be distributed and re-trained. Eventual training speed is
less important because training can happen between different interventions on
a computer or server with stronger hardware. If we compare these requirements
with the features of the different learning methods in Table 1, a DNN was picked
as a suitable candidate. The used DNN for the decision support system consists
of three layers, consisting of 100, 200 and 100 neurons respectively, whereby the
whole network is dense. The used activation function is the Rectified Linear Unit
(ReLu) activation function [20], the most successful in terms of results and widely



Fig. 3: General overview of the web-enabled dashboard. The top left corner contains
the weather overview. The bottom left corner contains the mission control (e.g. start,
pause, stop, upload and change current mission. The right top corner contains the drone
telemetry (e.g. current, voltage, battery level, altitude, heading). On the right side the
prioritized decision list is provided where a red color describes urgent actions (danger
situations), a yellow color describes a warning situation and a gray color describes an
informative message. The current drone location is marked with a white arrow marker
and the blue lines show the flight path of the drone. In the Point-of-Interest circle
(part of the drone flight path) the current detections are marked and labeled with a
self-explainable marker.



used activation function. It gives an output x when the input (x) is positive and
0 otherwise, resulting in fewer activated neurons in the DNN which means less
computational overhead and thus faster results for the incident responders. The
used classifier function is the Softmax cross entropy function [6]. It squashes a
K-dimensional vector of arbitrary real values to a K-dimensional vector of real
values in the range (0, 1) that add up to 1 (the probabilities). This means that
the commander and dispatcher can see how certain the decision support system
is about its result and eventually can take that into account when making a final
decision. A result with a higher probability is more likely to be correct than one
with a lower probability.

The input for the DNN are two detected objects and the distance between
them, all detected and calculated by the drone discussed in Section 3. Note
that other, non-distance related inputs are possible e.g. to generate an alert
when a victim is detected by the drone. For easier calculations within the neural
network, these input values, and especially the two detections are converted into
a label with the Labelencoder from the Python sklearn package. Afterwards,
these categorical integer labels are transformed with a one-hot, also called an
one-of-K scheme. When applied to a scenario with four possible detections, this
results in 9 input neurons, namely four for the first detection, four for the second
detection and one for the distance between them. Figure 4 provides a general
overview of the functioning of the DNN.

The output (prediction) of the DNN is the classification of the input into
one of the three possible classes, namely a danger, warning or normal situation.
These predictions, together with their probability is shown in an ordered fashion
to the user (i.e. the commander at scene or in the dispatch center), to support
them in gaining control of the crisis situation. The user can dismiss specific
warnings or mark dangerous situations which are not flagged by the system.

After training the DNN, the model can be exported to be used as a servable
within the TensorFlow Serving API [14]. The TensorFlow serving API allows to
serve different machine learning models and manages their lifetimes, so clients
can access versioned machine learning models via a high-performance, reference-
counted lookup-table. This allows to train multiple different models and request
a prediction from a specific model, managed by the TensorFlow server API. In
case that there is no reliable communication channel between the back-end and
the incident responders on scene, the model can be deployed on a local device
in e.g. the intervention truck.

5 Evaluation Results

Now that we have the architecture and the decision support system explained, an
evaluation is needed to check whether the system can give decisions accurately
and in real-time.
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Fig. 4: General functioning of the Deep Neural Network: detections and distance be-
tween detections are translated and fed into a neural network which leads to classifi-
cation of events into dangerous, potentially dangerous or safe occurrences.

5.1 Datasets

The datasets used for the evaluation are built based on previously defined rules,
created and generated under the supervision of a fire department expert ac-
tive in the 3DSafeGuard-VL project. The expert was an ICT responsible for
the fire department and cooperated in the design of different incident response
protocols. In these rules, two detected objects and a specific distance between
them result in different possible outputs, an alert in case of a danger situation,
a warning in case of a potentially unsafe situation or nothing when no threats
are detected. A sample of select entries in the dataset is provided in Table 2.
The datasets are built only for evaluation purposes and the whole system is
not limited to the detections specified below. As explained in Section 3 an au-
tonomous incident-scanning drone provides the decision support system with
real-time object detection capability.

Three different datasets are created to evaluate the change in accuracy and
in response time when more rules are trained. Dataset 1 trains the decision
support system on 190 different rules, based on 20 possible detected objects.
Dataset 2 trains the decision support system on 435 rules, based on 30 possible
detected objects and Dataset 3 trains the system on 990 rules, based on 45
possible detected objects. The total number of rules per dataset is based on the
number of possible detected objects, namely

∑x−1
i=1 i where x is the number of

possible detected objects. An overview of the datasets is showed in Table 3.

Accuracy is important to the incident responders because they base their
decisions in part on the predictions made by the decision support system. A



lower accuracy means that there is a higher possibility of a wrong prediction.
The three datasets have a different amount of rules to study their impact on
the accuracy. With more rules incident responders can get more contextual in-
formation about the incident because more objects are scanned and analyzed.
The response time on the other hand is also of great importance to evaluate the
decision support system is capable of providing decisions in real-time or near
real-time as a function of the number of rules in the system.

Table 2: Sample of dataset entries

Detection 1 Detection 2 Distance Result

Firefighter Explosion 10 Alert

Firefighter Fire 5 None

Victim Fire 10 Warning

Victim Explosion 5 Alert

Fire Explosion 2 Alert

Table 3: Overview of the different datasets. (# pos. detections shows how many different
objects can be identified such as a firefighter, fire, smoke, etc., # training entries shows
on how many entries of the dataset training is done and # evaluation items shows on
how many entries the accuracy of the model is determined.)

Name # Rules # pos. detections # training items # evaluation items

Dataset 1 190 20 7600 1520

Dataset 2 435 30 18560 3712

Dataset 3 990 45 40760 8152

5.2 Results

Several experiments were performed using the three different datasets summa-
rized in Table 3. First, the training phase is evaluated with a varied range of
training steps, going from 100 to 40000 in steps of 100 in function of the obtained
accuracy. This training is done on a Nvidia GTX 980 Ti GPU with CUDA 9.0
and TensorFlow 1.8 installed and the results are visualized in Figure 5. The
accuracy of the DNN is at the highest levels starting from 4500 training steps.
More training steps do not guarantee better accuracy in general. An important
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Fig. 5: Accuracy of the trained model as a function of the training steps for the three
datasets consisting of 190, 435 and 990 rules.

conclusion from Figure 5 is that a model with less rules has better accuracy than
a model with more rules. This behavior can be explained because there are less
possibilities within the NN itself, causing a lower fault rate and thus a higher
accuracy.

After training three different DNN-models from the datasets, these models
are exported to another (less powerful) laptop. This laptop contains 8GB of
RAM, an Intel-i5 processor and lacks a GPU. On this laptop, the models are
exposed to predict 36 decisions, each based on 2 detections and the distance
between them. This will indicate that a model can be exported to a local device in
e.g. an intervention truck when communication with the back-end is not reliable
or available. When the local device is connected to the drone, it is thus possible to
have decision support on site. As shown in Figure 6, the response time is equally
for the three different models. The total time the three models, consisting of
190, 435 and 990 rules, needed for making 36 predictions are 421ms, 408ms and
432ms respectively. It is proven that a model works concurrent and can handle
multiple request at the same time. A possible explanation for the outliers in
response time is that the request was stalled when the model was predicting
another request.

Figure 7 shows the response time on 36 predictions for the three models on a
device with a GTX 980Ti equipped. Compared to the device that lacks a GPU,
the average response time is 23.59% faster for each individual response as for the
36 responses together. It is also remarkable, when using a system with a GPU,
that the response time for 190 rules is higher in most cases than the response
time for the models with 435 and 990 rules. When the model has more rules,
more Nvidia-CUDA cores will be used in parallel, which result in lower response
times. This is highly dependent on the specification of the used GPU.



Fig. 6: Required time (in ms) for calculating a prediction on a CPU based on 2 de-
tections and the distance between them, evaluated on the three models consisting of
190, 435 and 990 rules. The request are sent after each other and the total time for
predicting these 36 request are 421ms, 408ms and 432ms respectively.

Fig. 7: Required time (in ms) for calculating a prediction on a GPU based on 2 de-
tections and the distance between them, evaluated on the three models consisting of
190, 435 and 990 rules. The request are sent after each other and the total time for
predicting these 36 request are 315ms, 307ms and 306ms respectively.



Based on these results, it seems reasonable to train different decision support
systems, all tailored to specific incidents such as a model in case of a diving
incident, an earthquake, a fire, etc. In case of an incident, the request for decision
support needs to specify which type of incident is occurring and based on that,
the correct model is selected and more accurate predictions can be done resulting
in improved reliability of the system. The incident responders will not notice
the change from one model to another, and when switching to a model with
more rules, there will be no change in response time. The drawback to this is
cases where the decision support needs to aid with mixed incidents such as an
earthquake followed by multiple fires and explosions. A possible solution is to
introduce general detections and or rules that are available in every model or
run multiple models in parallel.

6 Conclusions

This paper proposed the use of a decision support system for the classification of
potential dangers based on data retrieved from a drone autonomously surveying
an incident zone. Prototyped with TensorFlow, it was shown that it is possible
to create a real-time decision support system that helps incident responders on
scene to take split second decisions and potentially save lives. Based on the
evaluation, it is proven that a decision support model can be deployed on a
less powerful device (e.g. a laptop) with a minimal average increase of 100ms in
response time. Also based on the evaluation, it is recommended to divide all the
possible rules into different incident-specific models in order to gain improved
accuracy between 2% and 5%. Incident responders do not need to know which
model is used and will not notice when the model is changed in the back-end
because the response time does not increase as function of the number of rules
in a model. Remark that some common rules need to be included in each model
to avoid having to switch between models too often.

As discussed in Section 3, the relearning of the model based on incident re-
sponder feedback from previous incidents is a candidate for future research. Also,
information obtained through crowd sourcing platforms can provide even more
contextual information, not provided by the autonomous drone and should be
tied into the decision support system. One of the difficulties with crowd sourcing
remains however autonomous selection of relevant data. Finally, a system will
be introduced which will allow for more warning handling prioritization on top
of the classification between danger, warning or a clear situation.
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