7 research outputs found

    Flowers in the Attic: Lateralization of the detection of meaning in visual noise

    Get PDF
    The brain is a slave to sense; we see and hear things that are not there and engage in ongoing correction of these illusory experiences, commonly termed pareidolia. The current study investigates whether the predisposition to see meaning in noise is lateralized to one hemisphere or the other and how this predisposition to visual false-alarms is related to personality. Stimuli consisted of images of faces or flowers embedded in pink (1/f) noise generated through a novel process and presented in a divided-field paradigm. Right-handed undergraduates participated in a forced-choice signal-detection task where they determined whether a face or flower signal was present in a single-interval trial. Experiment 1 involved an equal ratio of signal-to-noise trials; experiment 2 provided more potential for illusionary perception with 25% signal and 75% noise trials. There was no asymmetry in the ability to discriminate signal from noise trials (measured using d') for either faces and flowers, although the response criterion (c) suggested a stronger predisposition to visual false alarms in the right visual field, and this was negatively correlated to the unusual experiences dimension of schizotypy. Counter to expectations, changing the signal-image to noise-image proportion in Experiment 2 did not change the number of false alarms for either faces and flowers, although a stronger bias was seen to the right visual field; sensitivity remained the same in both hemifields but there was a moderate positive correlation between cognitive disorganization and the bias (c) for "flower" judgements. Overall, these results were consistent with a rapid evidence-accumulation process of the kind described by a diffusion decision model mediating the task lateralized to the left-hemisphere

    Differential effects of AMPK agonists on cell growth and metabolism

    No full text
    As a sensor of cellular energy status, the AMP-activated protein kinase (AMPK) is believed to act in opposition to the metabolic phenotypes favored by proliferating tumor cells. Consequently, compounds known to activate AMPK have been proposed as cancer therapeutics. However, the extent to which the anti-neoplastic properties of these agonists are mediated by AMPK is unclear. Here we examined the AMPK-dependence of six commonly used AMPK agonists (metformin, phenformin, AICAR, 2DG, salicylate and A-769662) and their influence on cellular processes often deregulated in tumor cells. We demonstrate that the majority of these agonists display AMPK-independent effects on cell proliferation and metabolism with only the synthetic activator, A-769662, exerting AMPK-dependent effects on these processes. We find that A-769662 promotes an AMPK-dependent increase in mitochondrial spare respiratory capacity (SRC). Finally, contrary to the view of AMPK activity being tumor suppressive, we find A-769662 confers a selective proliferative advantage to tumor cells growing under nutrient deprivation. Our results indicate that many of the anti-growth properties of these agonists cannot be attributed to AMPK activity in cells, and thus any observed effects using these agonists should be confirmed using AMPK-deficient cells. Ultimately, our data urge caution, not only regarding the type of AMPK agonist proposed for cancer treatment, but also the context in which they are used

    New insights into the trophic and cytoprotective effects of creatine in in vitro and in vivo models of cell maturation

    No full text
    corecore