33,037 research outputs found
Mapping genomic regions and genes associated with the fat-tail, an adaptation trait in indigenous sheep
Poster prepared for a share fair, Addis Ababa, May 201
Decaying grid turbulence in a rotating stratified fluid
Rotating grid turbulence experiments have been carried out in a stably stratified fluid for relatively large Reynolds numbers (mesh Reynolds numbers up to 18000). Under the combined effects of rotation and stratification the flow degenerates into quasihorizontal motions. This regime is investigated using a scanning imaging velocimetry technique which provides time-resolved velocity fields in a volume. The most obvious effect of rotation is the inhibition of the kinetic energy decay, in agreement with the quasi-geostrophic model which predicts the absence of a direct energy cascade, as found in two-dimensional turbulence. In the regime of small Froude and Rossby numbers, the dynamics is found to be non-dissipative and associated with a symmetric and highly intermittent vertical vorticity field, that displays k(h)(-3) energy spectra. For higher Rossby numbers, fundamental differences with the quasi-geostrophic model are found. A significant decay of kinetic energy, which does not depend on the stratification, is observed. Moreover, in this regime, although both cyclones and anticyclones are initially produced, the intense vortices are only cyclones. For late times the flow consists of an assembly of coherent interacting Structures. Under the influence of both rotation and stratification, they take the form of lens-like eddies with aspect ratio proportional to f/N
On the simulation of interactive non-verbal behaviour in virtual humans
Development of virtual humans has focused mainly in two broad areas - conversational agents and computer game characters. Computer game characters have traditionally been action-oriented - focused on the game-play - and conversational agents have been focused on sensible/intelligent conversation. While virtual humans have incorporated some form of non-verbal behaviour, this has been quite limited and more importantly not connected or connected very loosely with the behaviour of a real human interacting with the virtual human - due to a lack of sensor data and no system to respond to that data. The interactional aspect of non-verbal behaviour is highly important in human-human interactions and previous research has demonstrated that people treat media (and therefore virtual humans) as real people, and so interactive non-verbal behaviour is also important in the development of virtual humans. This paper presents the challenges in creating virtual humans that are non-verbally interactive and drawing corollaries with the development history of control systems in robotics presents some approaches to solving these challenges - specifically using behaviour based systems - and shows how an order of magnitude increase in response time of virtual humans in conversation can be obtained and that the development of rapidly responding non-verbal behaviours can start with just a few behaviours with more behaviours added without difficulty later in development
The dog that did not bark: Insider trading and crashes
This paper documents that at the individual stock level insiders sales peak many months before a large drop in the stock price, while insiders purchases peak only the month before a large jump. We provide a theoretical explanation for this phenomenon based on trading constraints and asymmetric information. We test our hypothesis against competing stories such as patterns of insider trading driven by earnings announcement dates, or insiders timing their trades to evade prosecution. Finally we provide new evidence regarding crashes and the degree of information asymmetry.Insider Trading, Rational Expectations Equilibrium, Trading Constraints, Volatility, Crashes
Role of the medial part of the intraparietal sulcus in implementing movement direction
The contribution of the posterior parietal cortex (PPC) to visually guided movements has been originally inferred from observations made in patients suffering from optic ataxia. Subsequent electrophysiological studies in monkeys and functional imaging data in humans have corroborated the key role played by the PPC in sensorimotor transformations underlying goal-directed movements, although the exact contribution of this structure remains debated. Here, we used transcranial magnetic stimulation (TMS) to interfere transiently with the function of the left or right medial part of the intraparietal sulcus (mIPS) in healthy volunteers performing visually guided movements with the right hand. We found that a "virtual lesion" of either mIPS increased the scattering in initial movement direction (DIR), leading to longer trajectory and prolonged movement time, but only when TMS was delivered 100-160 ms before movement onset and for movements directed toward contralateral targets. Control experiments showed that deficits in DIR consequent to mIPS virtual lesions resulted from an inappropriate implementation of the motor command underlying the forthcoming movement and not from an inaccurate computation of the target localization. The present study indicates that mIPS plays a causal role in implementing specifically the direction vector of visually guided movements toward objects situated in the contralateral hemifield
Establishing the behavioural limits for countershaded camouflage
Countershading is a ubiquitous patterning of animals whereby the side that typically faces the highest illumination is darker. When tuned to specific lighting conditions and body orientation with respect to the light field, countershading minimizes the gradient of light the body reflects by counterbalancing shadowing due to illumination, and has therefore classically been thought of as an adaptation for visual camouflage. However, whether and how crypsis degrades when body orientation with respect to the light field is non-optimal has never been studied. We tested the behavioural limits on body orientation for countershading to deliver effective visual camouflage. We asked human participants to detect a countershaded target in a simulated three-dimensional environment. The target was optimally coloured for crypsis in a reference orientation and was displayed at different orientations. Search performance dramatically improved for deviations beyond 15 degrees. Detection time was significantly shorter and accuracy significantly higher than when the target orientation matched the countershading pattern. This work demonstrates the importance of maintaining body orientation appropriate for the displayed camouflage pattern, suggesting a possible selective pressure for animals to orient themselves appropriately to enhance crypsis
Towards efficient decoding of classical-quantum polar codes
Known strategies for sending bits at the capacity rate over a general channel
with classical input and quantum output (a cq channel) require the decoder to
implement impractically complicated collective measurements. Here, we show that
a fully collective strategy is not necessary in order to recover all of the
information bits. In fact, when coding for a large number N uses of a cq
channel W, N I(W_acc) of the bits can be recovered by a non-collective strategy
which amounts to coherent quantum processing of the results of product
measurements, where I(W_acc) is the accessible information of the channel W. In
order to decode the other N (I(W) - I(W_acc)) bits, where I(W) is the Holevo
rate, our conclusion is that the receiver should employ collective
measurements. We also present two other results: 1) collective Fuchs-Caves
measurements (quantum likelihood ratio measurements) can be used at the
receiver to achieve the Holevo rate and 2) we give an explicit form of the
Helstrom measurements used in small-size polar codes. The main approach used to
demonstrate these results is a quantum extension of Arikan's polar codes.Comment: 21 pages, 2 figures, submission to the 8th Conference on the Theory
of Quantum Computation, Communication, and Cryptograph
The dog that did not bark: Insider trading and crashes
This paper documents that at the individual stock level insiders sales peak many months before a large drop in the stock price, while insiders purchases peak only the month before a large jump. We provide a theoretical explanation for this phenomenon based on trading constraints and asymmetric information. A key feature of our theory is that rational uninformed investors may react more strongly to the absence of insider sales than to their presence (the “dog that did not bark” effect). We test our hypothesis against competing stories such as patterns of insider trading driven by earnings announcement dates, or insiders timing their trades to evade prosecution.insider trading; rational expectations equilibrium; trading constraints; volatility; crashes; short- sales constraint
- …