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only the month before a large jump. We provide a theoretical explanation for
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prosecution. Finally we provide new evidence regarding crashes and the degree of

information asymmetry.

Journal of Economic Literature Classification Numbers: D82, G11, G12, G14, G28

Keywords: Insider Trading, Rational Expectations Equilibrium, Trading Constraints,

Volatility, Crashes.

∗We are very grateful to Antoni Sureda for outstanding research assistance and to Anthony Tay

for helpful pointers early in the project. We also thank Joachim Voth for very insightful comments

and seminar audiences at the SAET 2005 Meeting, Pompeu Fabra University and University of Ali-

cante. Jose Marin acknowledges financial support from the Spanish Ministry of Science and Technology

(BEC2002-00429 Grant) and from CREA. Jacques Olivier gratefully acknowledges financial support

from the Fondation HEC.
†Universitat Pompeu Fabra and CREA; E-mail:jose.marin@upf.edu
‡H.E.C. School of Management, GREGHEC and CEPR; E-mail: olivier@hec.fr

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6591507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 INTRODUCTION

Sir Arthur Conan Doyle made clear in his celebrated “Silver Blaze” mystery that some-

times there is more to be learned from the absence of an action than from its presence.

This insight turns out very relevant in the present first study of the patterns of insider

trading preceding large movements in stock prices. Figure 1 is illustrative of the type

of phenomena we study. The figure shows the sales and purchases done by corporate

managers in the 12 months preceding, respectively, the largest drop and the largest

jump in the monthly S&P 500 index during the 1986-2005 period. It can be observed

that aggregate sales by insiders peaked ten months before the drop and then went

down sharply before the drop occurred. By way of contrast, aggregate purchases by

insiders before the jump exhibit a very different pattern: they remained low all year

long and picked up only the month before the jump. In the paper, we look at individual

stocks traded on the NYSE, AMEX and NASDAQ between 1985 and 2002 and find

evidence of similar patterns of insider trading preceding large events at the individual

stock level. The evidence is especially strong regarding insider sales, which runs against

the mainstream view that insider sales are almost exclusively driven by the needs for

liquidity and diversification.

[Insert figure 1]

Why would insiders sell many months before a large drop but stop selling soon

before the event? There are many possible answers to this question. One view is that

many large drops in prices are due to companies failing to meet earnings expectations

and that most companies prohibit insiders from trading prior to an earning announce-

ment1. Thus, any insider who wishes to exploit private information related to poor

company earnings has to trade significantly before the actual earnings announcement

and, therefore, significantly before the crash. Another view is that insiders try to es-
1The Insider Trading and Securities Enforcement Act of 1988 made top management responsible

for insider trading done by any employee. This regulation encouraged companies to issue internal rules

prohibiting all trading by insiders around major corporate events, such as earning announcements or

take-over deals.
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cape scrutiny from the SEC and that the SEC investigates any trade that takes place

near the date at which the price movement occurred. A third alternative view is that

insiders are forced to trade many months before the expected price drop because of

the “short swing” rule of the 1934 Security Exchange Act that prohibits profit-taking

by insiders for offsetting trades within six months2. In either case, insiders who wish

to profit from their private information will optimally trade months before the date of

the actual event.

It is hard, however, to reconcile any of these views of the evidence on insider sales

with the evidence on insider purchases. Why don’t we observe a similar pattern of

insider purchases prior to jumps? It is indeed the sharp asymmetry between sales

before crashes and purchases before jumps that is hard to reconcile with any theory

that treats both types of transactions symmetrically. In our view, these two types of

transactions are not symmetric because of portfolio constraints faced by insiders when

they trade on bad news. These constraints may arise for several reasons, such as short-

selling constraints3, the insider being a large shareholder who wishes to retain control

of the company, or the insider being a manager who is granted some stocks as part

of his compensation package but which he is not allowed to resale before some period

of time. In the first part of the paper we address this conjecture theoretically and

show that the presence of such portfolio constraints can explain both the occurrence

of crashes and the observed pattern of insider trading. We then test our model and

compare its predictions with those of competing stories in the second part of the paper.

The model we use is a standard noisy rational expectations model à la Grossman
2For an analysis of returns to insider trading based on the six months short swing rule, see Jeng

et al. (2003).
3The short selling restrictions for individual investors in the US are fairly mild and stem mostly from

the up-tick rule and from the extra cost for borrowing securities. On the other hand, the restrictions for

corporate insiders are much more stringent. Section 16c of the Securities and Exchange Act prohibits

US insiders to sell short their own stock. Furthermore, new regulations in the 1980’s assure this

requirement can not be evaded by creating a similar position by trading in derivatives. Allowing

insiders to sell short would not be in the interest of shareholders as it would miss-align shareholders

and management interests.
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and Stiglitz (1980) and Bhattacharya and Spiegel (1991), but where trading by in-

formed traders is restricted in that their stock holdings cannot go below a given floor.

Whenever insiders are trading, information gets incorporated into prices and prices ad-

just continuously. However, once insiders’ holdings reach the floor set by the constraint,

insiders can no longer act on further bad news. When uninformed traders observe past

trading by insiders which is consistent with their constraint being binding, they can

infer only that insiders are in possession of bad news (as otherwise insiders would be

buying the stock back) but not how bad the news really are. This deductive process

results on a sharp change in outside investors beliefs and perceived level of uncertainty.

In particular, expected payoffs fall and uncertainty (risk) rises. The combination of the

two effects leads to a discontinuity in the price process, that is a crash. However, to

the extent that the crash is driven by a drop in the informational content of prices and

an increase of the risk premium required by uninformed investors, it is consistent with

agents rationality and with stock market efficiency.

This theory of crashes in asset prices exhibit two main distinctive features, which

give rise to testable implications. The first feature is that compared to normal times,

crashes occur after insiders’ holdings have reached a floor and are preceded by an

immediate period of relatively low insider trading activity. Thus, insider sales in the

immediate past should be associated to a low likelihood of a crash (since in our model

a crash occurs after the insiders have stopped trading) but insider sales in the far past

should be associated to a high likelihood of a crash (since it brings insiders closer to

the point where the “floor” constraint binds). The second feature is that a symmetric

pattern of insider purchases, namely a period of intense purchases followed by a period

relatively low activity, does not generate a jump in the stock price. This is because

there is no “ceiling” constraint on insiders holdings to mirror the “floor” constraint.

As mentioned earlier, the second feature is what distinguishes the testable implications

of our model with those of theories based on insiders trying to evade prosecution or

based on the short swing rule. We test our theory using a dataset similar to the one

used by Lakonishok and Lee (2001), covering the insider trading activity of companies
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traded on the NYSE, AMEX and NASDAQ during the 1985-2002 period. The empirical

results provide strong support for both distinctive features of our theoretical model.

The results are robust to splitting the sample and to the use of different estimation

techniques, different measures of crashes and different time periods for the insider

trading variables.

Our work is related to two lines of research in finance: insider trading and stock

market crashes. A key issue in the literature on insider trading is whether insiders earn

abnormal returns on their portfolios. The answer provided by most recent empirical

analysis is that stocks purchased by insiders earn positive abnormal returns but stocks

sold by insiders do not exhibit negative abnormal returns. Lakonishok and Lee (2001)

look at abnormal returns of portfolios based on the intensity of insider purchases and

sales. After controlling for size, book to market and momentum effects, they find a

statistically and economically significant excess return of 4.82% for portfolios of stocks

with a strong “purchase signal”. By way of contrast, the excess return of strong “sell

signals” portfolios is statistically insignificant. Jeng et al. (2003) estimate the returns

to the insiders’ own portfolio over a six-month window. They construct a “purchase

portfolio” that holds all shares purchased by insiders over a six month period and a

“sale portfolio” that holds all shares sold by insiders over a six month period. They

find that the purchase portfolio earns positive abnormal returns of the order of 50 basis

points per month while the sale portfolio earns no negative abnormal return. Friederich

et al. (2002) and Fidrmuc et al. (2004) provide evidence based on UK data suggestive

of significantly smaller absolute price reaction to insider sales than to insider purchases.

Thus, the consensus of the existing literature when interpreting these results is that

“insider selling that is motivated by private information is dominated by portfolio

rebalancing for diversification purposes” (Lakonishok and Lee (2001))

In this paper, we provide new evidence regarding the informational content of insider

sales. Using insights from our model, we argue that the coefficient of insider sales in

a typical regression explaining returns is theoretically indeterminate even when insider

sales are informationally driven. On the one hand, selling by insiders reveals bad news
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to the market and causes prices to go down. On the other hand, the absence of selling

by insiders can reveal even worse news (the “dog that did not bark” effect) and thus

cause prices to go down even more rapidly than if there had been moderate selling by

insiders. The first effect tends to make the coefficient of insider sales negative while

the second effect tends to make it positive. In the empirical part of this paper we use

insiders sales and purchases to explain extreme returns (crashes and jumps) rather than

returns per se, as in the existing literature on insider trading. We find that insider sales

are very significantly associated with crashes, in a way both consistent with our theory

and inconsistent with the hypothesis that insider sales are solely driven by liquidity

needs.

The second branch of the literature our work is related to deals with stock market

crashes. The past few years have seen an explosion of research providing insightful

analysis of why and how crashes can occur. It turns out useful to split this literature

in two families, depending on whether crashes are associated with higher or lower

uncertainty from the point of view of uninformed traders. In the first category category

we have, first, models that view crashes as bursting bubbles4, all of which imply that a

crash brings prices closer to fundamental values. Models based on rational herding5 will

deliver a similar prediction. Finally, in this category we also have a number of models

that emphasize the role played by trading constraints, most notably Romer (1993), Cao

et al. (2002) and Hong and Stein (2003), that predict that crashes reveal information as

they are driven by informed investors who were initially out of market getting back into

the market (sidelined investors). Interestingly enough, trading constraints also play a

crucial role in models belonging to the second family, where crashes are not driven

by revelation of information but, on the contrary, by a sharp increase in uncertainty.

Models belonging to the second family comprise work by Gennotte and Leland (1990),

Barlevy and Veronesi (2003) and by Yuan (2005). Our model also belongs to this

category with two differences relative to the existing literature. First, from a technical
4See for instance Allen et al. (1993), Allen and Gale (2000) Allen et al. (2003) and Hong et al.

(2005)
5For instance, see Devenou and Welch (1996) for an early survey.
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point of view, we eliminate some unnecessary ingredients of existing models, such as

ad-hoc trading rules and borrowing or leverage constraints. Second, and more crucially,

we let trading by informed investors to be observable by the rest of the market. This

feature is important to bring the model to the data since we wish to identify informed

investors as insiders, whose trades are publicly observable in markets such as the US

market.

Thus, a key variable for sorting among the many different views of crashes is whether

crashes are associated with informed investors getting in the market and prices becom-

ing more informative, or whether crashes are associated with informed investors getting

out of the market and prices becoming less informative. Our empirical work allows us

to shed some light on this issue in the context of the US markets in the past 20 years.

There is data available on the actual trading of one type of informed investors, namely

insiders, and we can easily construct different indicators of crashes at the individual

stock level. Thus we can test whether insiders have been pulling in or out of the market

prior to a crash. The results we obtain unambiguously supports the view of crashes

associated with informed investors pulling out of the market. Indeed we find that both

insiders trading volume and insiders sales are negatively and significantly associated

with the likelihood of a crash in the following month. We also find that these two

variables are positively and significantly associated with the likelihood of a crash in the

following year. In other words, the highest likelihood of a crash is obtained when there

has been selling by insiders in the past but insiders have just pulled out of the market6

A closely related paper to our empirical analysis is the work by Chen et al. (2001).

They look at the determinants of negative skewness in individual stock returns. They

estimate negative skewness using daily returns and find that it is most pronounced in

stocks where trading volume has recently gone up and in stocks with positive returns
6A totally different way to test between these two hypothesis would consist in looking at the im-

plications for expected returns. If a crash is an event that reveals information, one would expect the

risk premium demanded by uninformed investors to go down after the crash. By way of contrast, if a

crash is an event where prices reveal less information, one would expect the risk premium required by

uninformed investors to go up after the crash.
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over the past 36 months. The first finding supports the view that more heterogeneity of

beliefs is conductive to crashes, as emphasized in Hong and Stein (2003). The second

finding is consistent with a number of models, most notably models with stochastic

bubbles. One difference between Chen, Hong and Stein’s empirical analysis and ours

is that we use a binary indicator of crashes instead of using negative skewness. Our

results are an indication of the robustness of Chen, Hong and Stein’s findings since we

also find that both past returns and the change in total trading volume are positively

associated with a higher likelihood of crashes. However, the main difference between

our work and Chen, Hong and Stein’s is that we look not only at the impact of total

trading volume on crashes but also at the impact of insider trading on crashes, which

allows us to test whether a well-defined group of investors with superior information

gets into or out of the market before a crash.

The reminder of the paper is organized as follows. In section 2 we present a the-

oretical model of insider trading in the presence of trading constraints. Section 3 is

dedicated to the empirical study. We first describe the data, define the variables and

explain the methodology. Then we empirically test the main predictions of the model.

We also conduct additional tests supporting our model of insiders’ behavior in the

presence of trading constraints over competing stories of insiders’ behavior. Finally,

section 4 is dedicated to some concluding remarks.

2 A SIMPLE MODEL OF INSIDER TRADING AND

CRASHES

In this section we define a simple environment of insider trading. The model is simple

but rich enough to identify some testable implications of insider trading activity on

asset prices. In this framework “insiders” have access to private information on asset

payoffs and can trade with uninformed traders on the basis on that information. They

can also trade due to hedging needs. All agents have rational expectations and in

equilibrium prices are partially revealing. In this simple setting we show that when
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insiders face some realistic trading constraints (such us not being able to sell short

shares of the stock) assets prices exhibit price discontinuities, or crashes. Furthermore,

the model identifies a very specific pattern of insiders’ stock holdings around those

crashes. In section 4 we test some of the predictions of this model.

2.1 The Basic Assumptions

The following setting of asset trading is a generalization of the Grossman and Stiglitz

(1980) model to introduce a constraint on asset holding. The other deviation from the

Grossman and Stiglitz (1980) setting consists on substituting “noise” by trading arising

from agents’ hedging needs7. More formally, there is an underlying probability space

(Ω,F ,P), on which all random variables are defined. A state of nature is denoted by

ω ∈ Ω. It is further assumed that all random variables belong to a linear space N of

joint normally distributed random variables on Ω. We will omit the dependance on

ω whenever it does not lead to confusion. The economy lasts for one period. At the

beginning of the period agents trade in the asset market. At the end of the period all

uncertainty is resolved and agents consume the only good in the economy whose price

is normalized to one. There are two assets in the economy: a risk-free and a risky asset.

The risk-free asset has a perfectly elastic supply and, without loss of generality, offers

a rate of return equal to zero. The risky asset consists on shares of a company. There

is a per capita amount of n>0 shares outstanding each of which offers a payoff given

by the (normally distributed) random variable f : Ω → <,

f = f + y + ε

where y and ε are normally distributed random variables and f is a constant. There

is a unit mass of traders in the economy. A fraction λI are “insiders” who have some

private information which is statistically related to f . In particular, each insider is in

a position that allows him to learn y, one of the components of the risky asset payoff.

Each insider is endowed with nI shares of the risky asset. The remaining fraction,
7For instance, see Marin and Rahi (2000) for some of the implications of this source of trading on

asset pricing and financial innovation.
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(1 − λI) of agents do not receive any private information and we will often refer to

them as “uninformed” traders8. Each uninformed trader is endowed with nU shares of

the risky asset.

Agents also receive income ei : Ω → < at the end of the period. This income can

either be interpreted as labor income or just income from holding assets which do not

have a spot market for trading. For simplicity we assume only insiders receive this type

of income. In particular:

eI = kIxIz

eU = 0

where kI is a constant, xI is a standard normal random variable uncorrelated with all

other random variables in the economy and z a normal random variable statistically

related to ε (σεz = Cov(ε, z) 6= 0). Before trading, insiders also observe the realization

of the random variable xI .

Denoting by wi the end of period wealth of agent i, by w0,i his initial wealth, by ni

the number of shares of the risky asset he holds after trading and by p the price of the

asset at time 0, we have:

wI = w0,I + kIxIz + nI(f − p) (2.1)

wU = w0,U + nU (f − p) (2.2)

Agents maximize the expected utility of their end of period consumption (wealth) and

behave competitively. In particular, each agent has a utility function Ui : < → <,

which exhibits constant absolute risk aversion:

Ui(wi) = − exp {−aiwi}

Before the market for assets trading opens, agents receive their private information.

Insiders are in possession of two important pieces of information, y and xI . The first
8Throughout this whole section 2 we denote insiders by I, uninformed traders by U , and generic

traders by i.

10



one, y, is relevant for assessing the true value of the asset in the future; the second, xI ,

is a key determinant of the size of the agents’ hedging needs. In our model we allow

the insiders to trade one both sources of information9. Since uninformed traders do not

hold any private information, the vector s(ω) = (y, xI) ∈ Σ ⊆ <m contains all private

information of the economy in state ω. Endowed with their private information, agents

trade in a Rational Expectations Equilibrium (REE)10. In this equilibrium agents use

both their private information and the information contained in equilibrium prices, p ∈
<, in the determination of their optimal asset holdings.

Definition 1 A REE is an equilibrium price function p(s) and a set of optimal demand

functions for insiders and uninformed traders {nI(y, xI , p), nU (p)} such that:

1) (measurability) p : Σ −→ < is a (Borel) measurable function.

2) (optimality) nI(y, xI , p) and nU (p) satisfy:

nI(y, xI , p) = ArgMaxE [UI(wI) s.t. (2.1) | y, xI , p]

nU (p) = ArgMaxE [UU (wU ) s.t. (2.2) | p]

3) (clearing) λInI(y, xI , p) + (1− λI)nU (p) = n

For simplicity and without any bearing on the main results, we further assume that

with the exception of σεz, all covariances and expectations of random variables are

equal to 0. Furthermore, all variances, except σ2
ε , are set equal to 1. To summarize,

the distributional assumptions on all the random variables are:




y

ε

z

xI



−→ ℵ








0

0

0

0




,




1 0 0 0

0 σ2
ε σεz 0

0 σεz 1 0

0 0 0 1








In section 2.3 we show that when insiders face trading constraints the REE price in
9In most countries some of the trading due to y is not allowed, but trading due to xI is permitted.

In the US, all trading on y based on the the so-called “material” information is not permitted and any

trade done by insiders must be reported to the SEC.
10See Radner (1979)
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this economy exhibit crashes. Before that, and for illustrative purposes, we compute

the REE in the economy without trading constraints.

2.2 Equilibrium in the Economy without Trading Constraints

In the absence of trading constraints each agent solves a typical mean variance portfolio

selection problem. Conditional on his information, the representative insider’s future

wealth is normally distributed. Taking the first order conditions, we find that his

demand for the risky asset is given by:

nI(y, xI , p) =
E (f |y, xI , p)− p− Cov(f, eI |y, xI , p)

aIV ar(f |y, xI , p)
=

f + y − p− aIkIσεzxI

aIσ2
ε

The equation above implies that equilibrium prices must reveal (to the uninformed

traders) θ(y, xI) ≡ y − aIkIσεzxI , which is normally distributed. Hence, the demand

function of the representative uninformed trader is identical to that of an agent with

private signal θ(y, xI). Thus, conditional on his signal and on the inferred information,

each uninformed trader’ future wealth is also normally distributed and his demand is

given by:

nU (p) = nU (θ) =
E (f |θ)− p− Cov(f, e2|θ)

aUV ar(f |θ) =
θ(y, xI) + (1 + m2)(f − p)

aU [m2 + (1 + m2)σ2
ε ]

where m ≡ aIkIσεz.

The REE price is given by:

P (y, xI) = K0 + K1θ(y, xI)

K0 ≡ f −
[
(1 + m2)σ2

ε + m2
]
σ2

ε

γσ2
ε (1 + m2) + λI

aI
m2

n

K1 ≡
γσ2

ε + λI
aI

m2(1 + σ2
ε )

γσ2
ε (1 + m2) + λI

aI
m2

where γ ≡ λI
aI

+ (1−λI)
aU

.

The equilibrium price is only partially revealing as it does not reveal y to the

uninformed traders but only a linear combination of y and xI , the endowment shock

of insiders.
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At equilibrium, agents’ asset holdings are given by:

nI =
1
aI




(
1−λI
aU

)
m2θ + ((1 + m2)σ2

ε + m2)n

γσ2
ε (1 + m2) + λI

aI
m2




nU =
1

aU

(
σ2

ε (1 + m2)n− λI
aI

m2θ

γσ2
ε (1 + m2) + λI

aI
m2

)

2.3 Equilibrium in the Economy with Trading Constraints

We now assume that the stock holdings of all agents, both insiders and uninformed

traders, must satisfy the following portfolio constraint:

nI ≥ ν

nU ≥ ν

where ν is a constant strictly smaller than n11.

We can decompose any equilibrium of the economy with portfolio constraints into

four regions:

• Region A where the signal received by the insiders is so good, or their hedging

motive so strong, that they purchase all the shares that the uninformed traders

can sell without violating the portfolio constraint. In that region, the portfolio

constraint of the uninformed traders is binding, the portfolio constraint of the

insider is not binding, and prices reveal θ to the market.

• Region B where the signal received by the insiders is good enough, or their hedging

motive strong enough, that they demand a larger number of shares than their

minimum holding allowed but not so good or so strong as to push the uninformed

traders out of the market. In that region, neither the portfolio constraint of the

insiders nor the portfolio constraint of the uninformed traders are binding, and

prices reveal θ to the market.
11The case ν = 0 corresponds to the standard no short-sales constraint.
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• Region C where the signal received by the insiders is bad enough, or their hedging

motive weak enough, that they would want to hold a number of shares below their

minimum holding allowed but not so bad or so weak as to cause a crash. In that

region, the portfolio constraint of the insider is binding, the portfolio constraint

of the uninformed trader is not binding, and prices reveal θ to the market.

• Region D where the signal received by the insiders is so bad, or their hedging

motive so weak that not only insiders would want to hold a number of shares

below their minimum holding allowed but also a crash (i.e. a price discontinuity)

occurs. In that region, the portfolio constraint of the insider is binding, the

portfolio constraint of the uninformed trader is not binding, and prices do not

reveal θ to the market. Expected returns are higher in Region D than in either

of the other three regions.

More formally, we show in the Appendix the following result:

Theorem 1 Let:

• θ ≡ aI
λIm2

(
(1 + m2)σ2

ε n− aUν
(
γ(1 + m2)σ2

ε + λIm2

aI

))

• θ ≡ aU
(1−λI)m2

(
−(

(
1 + m2

)
σ2

ε + m2)n + aIν
(
γ(1 + m2)σ2

ε + λIm2

aI

))

• θ∗ defined as a real number no larger than the smallest root t∗ of the equation:

t +
1√

1 + m2

f

(
t+aU

n−λIν

1−λI√
1+m2

)

F

(
t+aU

n−λIν

1−λI√
1+m2

) + aU (1 + σ2
ε )

n− λIν

1− λI
= νaIσ

2
ε (2.3)

where f(.) and F(.) are respectively the density and the CDF of the standard normal

distribution. There exists a continuum of rational expectations equilibria to the economy

with portfolio constraints, which are characterized as follows:

i) Region A: ∀θ s.t. θ ≥ θ

Prices: pa(θ) = f + θ − aIσ2
ε

λI
(n− (1− λI) ν)
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Holdings: nI = n−(1−λI)ν
λI

; nU = ν

ii) Region B: ∀θ s.t. θ > θ ≥ θ

Prices: pb(θ) = f + θ
γσ2

ε +
λIm2

aI
(1+σ2

ε )

γ(1+m2)σ2
ε +

λIm2

aI

− n
σ2

ε ((1+m2)σ2
ε +m2)

γ(1+m2)σ2
ε +

λIm2

aI

Holdings: nI = 1
aI

(“
1−λI
aU

”
m2θ+((1+m2)σ2

ε +m2)n

γσ2
ε (1+m2)+

λI
aI

m2

)
; nU = 1

aU

(
σ2

ε (1+m2)n−λI
aI

m2θ

γσ2
ε (1+m2)+

λI
aI

m2

)

iii) Region C: ∀θ s.t. θ > θ ≥ θ∗

Prices: pc(θ) = f + θ
1+m2 + (1+m2)σ2

ε +m2

(1−λI)(1+m2)
(λIaUν − aUn)

Holdings: nI = ν; nU = n−λIν
1−λI

iv) Region D: ∀θ s.t. θ < θ∗,

Prices: pd(θ) = p∗ ≡ f − 1√
1+m2

f

0
@ θ∗+aU

n−λIν
1−λI√

1+m2

1
A

F

0
@ θ∗+aU

n−λIν
1−λI√

1+m2

1
A
− aU (1 + σ2

ε )
n−λIν
1−λI

< pc(θ∗)

Holdings: nI = ν; nU = n−λIν
1−λI

.

Proof: (See Appendix)

In this economy equilibrium holdings are determined but equilibrium prices are

indeterminate (multiplicity of equilibria). A typical equilibrium is illustrated in Figure

2. The key features of any equilibrium of the economy with trading constraints are the

following:

1. Prices are discontinuous at the point θ = θ∗. In other words, a crash occurs

between Regions C and D.

2. Insiders holdings are constant in Region C. This means that a crash is preceded

by a region where insiders do not trade.

3. The trading constraint of insiders is binding in Regions C and D. In other words,

for a crash to occur insiders need to have divested in the stock.

4. Prices are continuous at the point θ = θ. In other words, a jump does not occur

when the trading constraint of uninformed investors is binding and insiders have

purchased the maximum amount of stock possible.

[Insert figure 2]
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3 EMPIRICAL STUDY

In this section, we document a systematic pattern of insider trading preceding large

drops in stock prices which is consistent with the qualitative properties of the model

in Section 2. We test our model against competing stories such as patterns of insider

trading driven by earnings announcement dates, or insiders timing their trades to evade

prosecution. We argue that our results invalidate the mainstream view that insider sales

are solely driven by liquidity needs. Finally we provide new evidence regarding crashes

and the degree of information asymmetry.

3.1 Data, Variable Definitions and Methodology

3.1.1 The Data

Our tests require merging data from two different sources. The Thomson Financial

Insider Filings (TFIF) database collects all insider trades reported to the SEC12. The

CRSP database provides data on returns, total trading volume and market capitaliza-

tion. We use this data to identify crashes at the firm level. Our universe of securities

includes all common stocks (with CRSP share code equal to 10 or 11) that trade on

the NYSE, AMEX, and Nasdaq markets from January 1985 to December 200213. The

procedures for selecting firms and cleaning the data are taken directly from Lakonishok

and Lee (2001).

Starting with the CRSP data, we exclude observations (firm/month record) for

which we do not have the monthly returns. We also exclude stocks that had a price

smaller than $2 at the beginning of the calendar year in order to avoid the measurement

errors described in Conrad and Kaul (1993).
12According to Section 16(a) of the Securities and Exchange Act, insiders are required to report

their trades by the tenth day of the month that follows the trading month. Reporting requirements

have tightened recently as the Sarabanes-Oxley Act of 2002 requires reporting to the SEC within two

business days following the insider’s transaction date.
13In addition to CRSP and TFIF, we use the COMPUSTAT database for two sets of regressions

in subsection 4.4, where earnings announcement data is necessary for testing our model against an

alternative hypothesis.
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The TFIF database comprises transactions done by three groups of insiders14:

“Management”, “Large Shareholders” and “Others”. Our sample contains transac-

tions done between 1986 and 200215. We eliminate filings that do not match with

CRSP data. This can happen because the security does not appear in the CRSP

dataset or because it is a non-common share. From the remaining filings, 889,473

correspond to open market or private sales (transaction code S), and 490,882 to open

market or private purchases (transaction code P). We focus on these transactions in

this study as they are more likely to be at least partly driven by information. The

remaining records correspond to other types of transactions, in particular grants and

awards or exercise of derivatives, which we do not include in our sample. We also ex-

clude amended records, trades for which we do not have the insiders transaction price

nor the closing price of the stock, and small transactions where less than 100 shares

were traded. Finally, some fillings in which the reported transaction price is not within

20% of the CRSP closing price on that day, or that involves more than the 20% of the

number of shares outstanding are eliminated to avoid problematic records. After this

cleansing process and after merging the insider trading dataset with the filtered CRSP

dataset, our sample contains 1,183,457 records. From those, 799,890 are sales, and

383,567 are purchases, which are distributed as follows: 979,467 transactions done by

“Management”, 185,096 done by “Large Shareholders” and 18,894 done by “Others”.

3.1.2 Crash variables

The first step in our empirical analysis consists in identifying crashes at the individual

stock level. Both our model and the data available put a number of constraints at this
14The “Management” group includes those transactions done by the chairman, directors, CEOs,

CFOs, officers, presidents, vice presidents, affiliates, members of committees, etc. The “Large Share-

holders” group includes those equity-holders (direct shareholders, indirect shareholders and beneficial

owners) who own more than 20% of shares and are not management. Finally, the transactions by the

rest of insiders (for example, founders or former managers) are classified as “Others”.
15The Lakonishok and Lee (2001) study covers the period 1975 to 1995. So our dataset misses some

of the earlier observations but focuses on the later period where insider trading has been relatively

more active.
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stage:

1. In our model, insider trading matters because it is observable to market partic-

ipants and these update their beliefs as insiders’ trades, or lack of trades, are

observed. In reality, prior to the Sarabanes-Oxley Act of 2002, there could exist

a gap of a few days to a few weeks between the date at which the trade took place

and the date at which it is reported. While one can reasonably expect that the

information about the insiders’ trades becomes available to market participants

at some point between these two dates, it seems difficult for us to take a harder

stance about the speed of revelation of information. This leads us to conduct our

empirical analysis at a monthly frequency.

2. While insiders have private information about their own company, they do not

necessarily have valuable information about the evolution of the entire market.

Thus, if insider trading and crashes are related at the individual stock level, they

must be for crashes driven by idiosyncratic shocks and not for crashes driven by

market-wide corrections. Consequently, our measure of crashes at the individual

stock level should correct for moves of the aggregate market.

3. Our theoretical model has sharp testable implications about the patterns of in-

sider trading prior to a crash. However, it does not have similar implications

regarding expected returns or conditional skewness16. The model does not pro-

vide restrictions about the size of the crash when a crash occurs either17. Thus,

if we are to take our model seriously we must define a crash as a binary variable

(either a crash occurred or it did not occur) and test whether patterns of insider

trading can predict the probability of a crash.

Taking into account these restrictions, we construct our first baseline variable for a

crash in stock i in month t, ERCRASHi,t, as follows. We first compute the series of

16In particular, before a crash occurs, expected returns are the same no matter the pattern of insider

trading.
17This is because of the multiplicity of equilibria in our model.
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monthly excess returns for each stock, rER
i,t ≡ ri,t − rm,t, where ri,t is the raw return of

stock i in month t and rm,t the monthly return of the CRSP equally weighted market

portfolio. Then for each observation (stock/month) we compute the mean excess return,

r̄ER
i,t , and the standard deviation of excess returns, σER

i,t , over a rolling window of the

past five years, or sixty months, of data. Finally, we define:

ERCRASHi,t =





1, if rER
i,t − r̄ER

i,t ≤ −2σER
i,t ;

0, otherwise.

Our second baseline variable for a crash, MMCRASHi,t, is constructed in a similar

fashion, except that excess returns are constructed by taking the difference between the

stock’s monthly return and its estimated return in a market model regression. That

is, we define, rMM
i,t ≡ ri,t − (rf,t + βi,t(rm,t − rf,t)), where βi,t is the beta of the stock

estimated over a sixty months window and rf,t is the risk-free rate. We then compute

the standard deviation of the residuals of the market regression, σMM
i,t . Finally, we

formally define:

MMCRASHi,t =





1, if rMM
i,t − r̄MM

i,t ≤ −2σMM
i,t ;

0, otherwise.

To check the robustness of our results with respect to our definition of crashes18, we

also compute another measure of crashes, RAWCRASHi,t, which is constructed in the

same way as the other two measures of crashes but using raw returns instead of excess

returns or residuals from the market model. As can be expected, the three measures of

crashes are fairly close to one another. Figure 3 represents the number of crashes per

year over the 15 years of our sample according to each measure. Table 1 provides the

sample correlation between the three measures of crashes. As could be expected, both

Table 1 and figure 3 show a strong positive correlation between our three measures of

crashes, especially between ERCRASH and MMCRASH. Note also that according

to all three measures, the post 1996 period has the largest number of crashes19.
18Robustness checks of the main regression are provided in subsection 3.2.3
19Another way of checking how closely related the three measures are is looking at the monthly

threshold return required by the alternative definitions for a crash to happen. The median of this

threshold in our sample is -21.58%, -23.03% and -21.78%, for rER
i,t , rMM

i,t and ri,t, respectively.
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[Insert table 1]

[Insert figure 3]

Finally, as we want to compare patterns of insider trading prior to crashes to pat-

terns of insider trading prior to jumps, where by “jump” we mean a large positive price

movement, we construct the variables ERJUMPi,t, MMJUMPi,t, RAWJUMPi,t.

Each of these four variables is defined in a totally symmetric fashion as their crash

variables counterparts. For instance, we have:

ERJUMPi,t =





1, if rER
i,t − r̄ER

i,t ≥ 2σER
i,t ;

0, otherwise.

Figure 4 represents the number of jumps per year according to each measure and

Table 2 provides the sample correlation between these three measures of jumps. We

observe that our three measures of jumps are even more strongly and positively corre-

lated with one another than in the case of crashes. We also observe a sharp increase in

the number of jumps after 1996.

[Insert table 2]

[Insert figure 4]

3.1.3 Independent variables

Independent variables fall in two categories: variables suggested by our model and

variables suggested by the existing literature. Variables suggested by our model mostly

consist in different measures of insider trading. In our empirical study, insider trading

includes all private or public market purchases and sales done by all categories of

insiders. We do not include grants and exercises of options as they are less likely to

be driven by information. To homogenize the insider trading variables across stocks

and across time, we normalize them by dividing the dollar value of each particular

trade by the market capitalization of the stock, computed using the closing price of

the day of the transaction. The main variables we use are: insider sales, INSSAL,

and insider purchases, INSPURCH. A first subscript, i, refers to the individual

stock considered. The variable may then have one or two time subscripts. If there is

20



only one time subscript, then the variable refers to trades that took place during the

corresponding month t. Thus INSSALi,t gives the total amount of insider sales on

stock i during month t. If there are two time subscripts, then the variable refers to the

monthly average between the two time subscripts. Thus INSPURCHi,t−1,t−12 gives

the average monthly amount of insider purchases on stock i between month t− 1 and

month t−12. In addition to these two basic categories of variables, we define composite

variables such as insider trading volume, INSTV , which is defined as insider sales plus

insider purchases.

Table 3 provides summary statistics on aggregate insider trading activity in our

sample. Figure 5 represents the evolution of insider purchases and sales over time. An

important point to note from figure 5 is that insider transactions, and most notably

insider sales, have been much larger in the 90’s than in the 80’s. This observation

suggests that findings regarding correlations between insider activity and crashes may

be sensitive to the choice of sub-sample. In subsection 3.2.3 we address this issue.

[Insert table 3]

[Insert figure 5]

Independent variables suggested by the existing literature include trading volume

and past returns. First, Chen et al. (2001) have shown that total trading volume (i.e.

both by insiders and outsiders), which we thereafter note as TTV , is a strong predictor

of negative skewness, a concept very much related to crashes. Their interpretation of

the results, consistent with the Hong and Stein (2003) model, is that TTV acts as

a proxy for the dispersion of opinions across investors. When interpreting our own

results we want to make sure that trading volume by insiders does not act as a proxy

for TTV . Thus we include TTV , at the same frequency as our insider trading variables,

in all our regressions. Similarly, the cumulative excess return over the equally weighted

market portfolio of the past two years, ERt−1,t−24 is likely to matter for two reasons.

First, Lakonishok and Lee (2001) have shown that insiders are contrarian investors.

If valuable information about crashes is contained in insider trading, it is likely to be

contained in the unexpected component of insider trading. Thus, to the extent that
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past returns predict insider trading, we want to include the variable in our regression.

Another reason for including past returns is the finding by Chen et al. (2001) that past

returns can predict negative skewness. Finally, our main regressions allow for firm and

year effects20.

3.1.4 Methodology

The binary nature of our dependent variables raises some estimation concerns. There

are three leading estimation procedures for regressions with a binary dependent vari-

able: the linear probability model (OLS), and the logit and probit models. Each proce-

dure has some defects: with the linear probability model, estimated probabilities may

lie outside the [0,1] interval and disturbances are heteroskedastic. With logit and pro-

bit, coefficients of group dummy variables cannot be estimated and the interpretation

of coefficients is less straightforward than with the linear probability model.

To the extent that our objective is not as much to get an estimate of the probability

of a crash as to test whether or not insider trading patterns are correlated with crashes

and jumps, we use the linear probability model in our main regressions. Since we know

that using the linear probability model will give rise to heteroskedasticity and since

we can also suspect problems of auto-correlation, we report significance of coefficients

based on Newey-West standard errors. As a robustness test, we also estimate our

leading regressions using logit and probit and report the results in subsection 4.3.

3.2 Empirical Results

In the introduction we established a dichotomy in the literature that view crashes as

a phenomenon that arises because of the existence of trading constraints. Models like

Romer (1993), Cao et al. (2002) and Hong and Stein (2003) share the property that

crashes occur when previously sidelined informed investors get back into the market.

Our model, like Gennotte and Leland (1990), Barlevy and Veronesi (2003) and by Yuan
20An example of firm’s characteristics that may have an impact on crashes is size as suggested by

Chen et al. (2001)
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(2005), has the opposite property: crashes occur when informed investors get out of

the market. Before testing specific implications of our model, we want to check more

generally whether the data favors or not the type of models ours belongs to. Despite

the wealth of theoretical models on crashes there has been so far, to the best of our

knowledge, no attempt has been made to ask the data the simple question: Do informed

investors get into or out of the market before a crash?

3.2.1 Preliminary result: Sidelined investors vs. the dog that did not bark

To answer the previous question we run regressions of our two baseline measures of

crashes, ERCRASHi,t and MMCRASHi,t against insiders trading volume as the mea-

sure of insider trading activity. In particular we regress our measures of crashes on the

past month trading volume by insiders INSTVi,t−1 and the average monthly insiders

trading volume in the past year, excluding the last month21, INSTVi,t−2,t−12. We also

include the past two years cumulative excess returns ERi,t−1,t−24 and the total trading

volume (by both insiders and outsiders) of the past month TTVi,t−1. Fixed month and

firms effects are allowed for through mean-differencing.

Table 4 presents the results of these first two regressions. Column 1 presents the

results for ERCRASHi,t and column 2 for MMCRASHi,t. The results are conclu-

sive on the relationship between crashes and insiders activity: there is a negative and

significant (at the 1% level) correlation between current insiders trading volume and

the probability of a crash. Furthermore crashes are positively correlated with far past

trading volume (although the coefficient is not significant in the case of crashes accord-

ing to the MMCRASH definition). Our empirical result is clear in its task of sorting

among theories of crashes in the presence of trading constraints. It establishes that a

crash is more likely to occur when insiders are getting out of the market than when

they are getting back into the market. If any, increased insiders trading activity is

associated with crashes in the far future. The result thus supports the general class of
21The choice of a one year window is arbitrary. However, results based on a different choice of horizon

are qualitatively similar to the ones presented here.
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theories of crashes our model belongs to.

[Insert table 4]

Finally, the variables ERi,t−1,t−24 and TTVi,t−1 are also strongly significant and

of the same sign as found in the existing literature, most notably Chen et al. (2001).

The fact that INSTVi,t−1 is negatively correlated with the probability of a crash when

controlling for the previous two variables is also relevant as it dispels any suspicion

that our insider trading variables may play the role of a proxy for total trading volume.

Indeed, insider trading volume over the past month is negatively correlated with the

probability of a crash while total trading volume is positively correlated, and in both

cases the coefficients are significant at the 1% level.

3.2.2 Baseline regression: insider sales and crashes

In this section we directly test the empirical implications of our theory of asset crashes.

The main implication of the model in section 2 is that a crash occurs in a region

characterized by insiders being short-sale constrained. In order for insiders to be short-

sale constrained they must have sold shares in the past. So, the main prediction of the

model is that nearby sales by insiders must be negatively correlated with the probability

of a crash while far away sales must be positively correlated.

To test this hypothesis we regress our measures of crashes, ERCRASHi,t and

MMCRASHi,t, against sales by insiders in the past month INSSALi,t−1 and the

average sales by insiders in the past year, INSSALi,t−2,t−12. We also include the past

two years cumulative excess returns ERi,t−1,t−24 and the total trading volume (by both

insiders and outsiders) of the past month TTVi,t−1. Fixed year and firms effects are

allowed for through mean-differencing. Formulating regressions in this fashion presents

three advantages:

1. Our model still has predictions for the sign of the coefficients. On the one hand,

the sign of INSSALi,t−2,t−12 should be positive since, ceteris paribus, more sales

by insiders in the past bring them closer to the point where the constraint is

binding and increases the probability of a crash. On the other hand, the sign of
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INSSALi,t−1 should be negative since a crash is supposed to occur after insiders

have stopped trading.

2. The alternate hypothesis provided by a standard static efficient market model

without constraints can also be tested. The coefficient of INSSALi,t−2,t−12

should not be significant since it is a variable which was public information

by month t − 1 (taking the most conservative stance about when the trades

were reported by insiders and the diffusion of information). The coefficient of

INSSALi,t−1 should either be non significant or positive, again depending on

the speed of reporting and of diffusion of information.

3. These regressions allow us to test whether the market believes that valuable

information is contained in insider sales. Indeed, if it were not the case, as

suggested by the existing literature on insider trading, then none of the coefficients

of the insider sales variables should come up significant.

Table 5 contains the results of the regression of crashes on sales. In the first column

crashes are defined using excess returns over the market portfolio; in the second column

crashes are computed using residuals from the market model. For both regressions,

coefficients of the insider sales variables are statistically significant. As argued above,

this finding is in very sharp contrast with the conclusion of the existing literature

on insider trading that insider sales are mostly driven by liquidity. Second, we find

that the signs of each coefficient correspond to the predictions of our model and do

not correspond to the predictions of a “standard” efficient market model: the sign

of INSSALi,t−1 is negative, which can only be reconciled with a “standard” efficient

market model if insiders were selling when the risk of a crash is lowest while it is

fully consistent with our “Dog that did not bark” theory. Similarly, the sign of the

INSSALi,t−2,t−12 variable is positive which is consistent with our interpretation that

crashes occur when insiders’ holding get close to the point where their short-selling

constraint is binding.

[Insert table 5]
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The strong statistical significance of the insiders sales variable is in sharp contrast

with an important literature that has argued that insiders purchases, rather than sales,

are the only insiders’ transactions with an informational content and the source of

profitable trading rules. Lakonishok and Lee (2001) examines insider trading activity

of companies traded on the NYSE, AMEX and NASDAQ during the 1975-1995 period.

After controlling for size, book to market and momentum effects, they find a statistically

and economically significant excess return of 4.82% for portfolios of stocks with a

strong “purchase signal” but at the same time find a positive but statistically non-

significant coefficient for strong “sell signals”. Jeng et al. (2003) estimate the returns

to the insiders’ own portfolio over a six-month window. They construct a “purchase

portfolio” that holds all shares purchased by insiders over a six month period and a

“sale portfolio” that holds all shares sold by insiders over a six month period. They

find that the purchase portfolio earns positive abnormal returns of the order of 50 basis

points per month while the sale portfolio earns no negative abnormal return. Friederich

et al. (2002) and Fidrmuc et al. (2004) provide evidence based on UK data suggestive

of significantly smaller absolute price reaction to insider sales than to insider purchases.

Thus, the consensus of the existing literature is that “insider selling that is motivated by

private information is dominated by portfolio rebalancing for diversification purposes”

(Lakonishok and Lee (2001).

The empirical evidence reported in table 5 is consistent with a few other possible

explanations, apart from our model. One possible explanation is the fact that insiders

are unlikely to trade on sensitive short-lived information. This is because insiders

trading on information want to escape scrutiny from the SEC and the SEC is likely

to investigate any trade by insiders that took place a few days before a crash. The

absence of trading on short-lived information could also arise because of the “short

swing” rule of the 1934 Security Exchange Act that prohibits profit-taking by insiders

for offsetting trades within six months. A second possible explanation has to do with

earning announcements. Indeed, many large drops in prices are due to companies failing

to meet earnings expectations and we know that most companies prohibit insiders from
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trading prior to an earning announcement. Thus, our finding that crashes are preceded

by a drop in selling by insiders could potentially be a pure artefact driven by calendar

effects.

We shall go back to the earnings announcement explanation in subsection 4.4 where

we test it explicitly against our model. However, testing the “no trading on short-

lived information” story against our model can easily be done at this stage. Indeed,

another implication of our model is that while continuous sales by insiders followed by

a period of no selling may drive a crash because of the short-sale constraint, continuous

purchases followed by a period of no buying will not drive a jump. Indeed, the absence

of a “ceiling” constraint explains that there is no jump in Region A. Thus, we should

not expect insider purchases to become significant if we run the symmetric regressions

for jumps. By way of contrast, the “no trading on short-lived information” story is

perfectly symmetric: whether it is for avoiding prosecution by the SEC or because

of the six months short swing rule, traders should abstain from trading on short-live

positive information the same way as they do with negative information.

In table 6 we present the results of regressions where we run ERJUMPi,t and

MMJUMPi,t against the past month purchases by insiders INSPURCHi,t−1 and the

average purchases by insiders in the past year INSPURCHi,t−2,t−12 (excluding the

last month’s). As before, we include the past two years cumulative excess returns

ERi,t−1,t−24, total trading volume (by both insiders and outsiders) of the past month

TTVi,t−1 as well as year and firm dummies. We observe that the results of the jump

regressions are consistent both with our model and with the predictions of a standard

efficient market hypothesis: the coefficient of INSPURCHi,t−2,t−12 is statistically in-

significant while the coefficient INSPURCHi,t−1 is positive and significant22. They

are however inconsistent with any of the alternate explanations of the crash regressions.

The main message of this section is that any theoretical model trying to explain the

patterns of insider trading prior to crashes also has to come to grip with the absence
22The lack of significance of the coefficient associated with INSPURCHi,t−2,t−12 is not

driven by multicolinearity considerations as the correlation between INSPURCHi,t−2,t−12 and

INSPURCHi,t−1 is just 0.01.
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of similar patterns prior to jumps.

[Insert table 6]

3.2.3 Robustness Checks

We now proceed to check the robustness of our base regressions. We want to check

the robustness of our results with respect to sample period, estimation technique and

definition of the variables, both dependant and independent.

As mentioned in Subsection 3.1.3, and illustrated in Figure 5, insider trading, as a

fraction of market capitalization, has increased sharply in the mid 90’s. This opens up

the question of how robust our results are to the choice of sample period. We split our

sample into two sub-samples, one covering the period 1986-1995 (low insider trading)

and the other the period 1996-2002 (high insider trading) and run the base regressions

on the two separate sub-samples. Table 7 reports the results for the leading regressions

for each subperiod. As could be expected given the relative activities of insider trading

in the two periods, results for the earlier period are less strong than for the later period.

Nevertheless, results are supportive of our theory. For the 1986-1995 period, all insider

trading variables in the crash regressions are of the right sign predicted by the theory

even though, to one exception, they lose significance. Also, the asymmetry between

crashes and jumps is preserved: high insider sales in the previous month lower the

probability of a crash while high insider purchases raise the probability of a jump. As

expected, results for the 1996-2002 period are strongly supportive of our theory: all

insider trading variables are of the right sign and significant at the 1% level (to one

exception, which is only significant at the 5% level).

[Insert table 7]

Our next sequence of checks deals with the estimation technique. For simplicity

and ease of interpretation, we estimated the base regressions using a linear probability

model. In Tables 8 and 9 we report results of similar regressions using, respectively,

a logit and a probit model23 to specify the probability of a crash. The results of
23Both sets of regressions include year dummy variables whose coefficients are not reported in the
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the regressions are quite encouraging. When crashes are defined using simple excess

returns, all insider trading variables are of the right sign and significant, both with the

logit and with the probit specifications. Also, as in all our regressions, the asymmetry

between crashes and jumps is preserved. When crashes are defined using a market

model, results are less strong. The good news for our theory is that the “dog that did

not bark” effect remains significant: under both specifications, higher insider sales in

month t−1 lowers the probability of a crash in month t. Also, the asymmetry between

crashes and jumps is again preserved. However, the “long term” insider sales variables

becomes totally insignificant (and of the wrong sign)

[Insert table 8]

[Insert table 9]

Our final robustness check concern the way we constructed our crash variables as

well as our insider trading variables. We first check if the 1-year window for insiders

activities preceding large price movements is critical for the results. In table 10 we

report the regression results for two alternative windows: six months and 24 months.

In these regressions the near past variable remains as in the baseline regression (one

month), but the far past variables goes back to months t − 6 and t − 24. The results

are at least as strong as the ones in the baseline regressions: the coefficients have the

right sign and (to one exception) are very strongly significant. The “dog that did not

bark” effect is present for crashes and absent for jumps, as predicted by the theory.

[Insert table 10]

Finally, in table 11 we report the results of the base regressions but using a definition

of crashes and jumps based on raw returns, rather than returns in excess of the CRSP

equally weighted market portfolio or the returns predicted by the market model. To the

extent that our model is not a model of market-wide crashes, we expected the results

of this regression to be considerably noisier than when adjustments for market changes

are being made. The results are consistent with our expectations: the “long-term”

insider trading variable remains of the right sign and significant at the 1% level but

tables.
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the ”short-term” variable is insignificant (and of the wrong sign).

[Insert table 11]

The overall picture we draw from these robustness tests is that the effects we identi-

fied in the previous section seem to be quite robust. In most of the alternate specifica-

tions we tried, both insider trading variables remained of the right sign and significant

for the crash regressions. In some regressions, one of the variables stopped being sig-

nificant but never two at the same time, nor did we observe a coefficient coming with

the wrong sign and even mildly significant. Finally, the asymmetry between crash and

jump regressions, which we argued earlier is one of our most striking findings remains

present in all alternate specifications.

3.2.4 Crashes and Earning Announcements

The last item we have so far left aside concerns the alternative interpretation of our

results based on the possible coincidence of crash dates and earnings announcement

dates. According to that hypothesis, there may be a large proportion of crashes that

take place during months where an earning announcement takes place, because of the

company’s earnings failing to meet the market’s expectations. To the extent that

insiders are prevented from trading their own company’s stock for a few weeks prior to

the earning announcement, it is natural to see crashes associated with low trading by

insiders the previous month. Thus, if the alternate hypothesis is correct, the correlation

between crashes and insider trading is a pure artefact driven by calendar effects, and

the absence of trading by insiders contains no valuable information for outsiders.

In order to test our hypothesis against this alternative hypothesis, we merge our

data set with information from COMPUSTAT regarding earnings announcements. We

eliminate all observations for which we do not have data regarding earnings announce-

ment dates for that stock and that year. We then construct a sub-sample with only

observations (stock/month) where no earning announcement was made for that stock

during that month. We then run the base regressions for that sub-sample.

The results, reported in Table 12, are unambiguous: all coefficients of insider trading
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variables for the crash regressions are significant at the 1% or at the 5% level and of

the right sign predicted by the theory. By way of contrast, none of the insider trading

variables are significant for the jump regressions, which confirms our earlier findings of

the crash/jump asymmetry.

[Insert table 12]

To further confirm the interpretation of our results, we perform one last test: we

run the base regressions on the sub-sample where all observations correspond to a

month where an earning announcement took place. To the extent that insider trading

is strongly regulated for most firms around these periods, both in terms of purchases

and of sales, uninformed traders should not be able to draw any inference, either

positive or negative, from the pattern of insider trading around those dates. Thus, if

our theory that the pattern of insider trading around crashes is driven by informational

considerations is correct, then insider trading variables should stop being significant in

the sub-sample. The results we report in table 13 support that hypothesis: not only

insider sales the month before stop being significant, which is expected given that there

is very little insider trading around earning announcement dates, but average insider

sales of the previous year stop being significant as well.

[Insert table 13]

4 CONCLUDING REMARKS

Insider trading and crashes in asset prices are among the finance concepts that have

historically attracted the largest amount of attention, both in the academic arena and

among practitioners. In this paper we introduce a theoretical framework that relates

them in a novel fashion. The model we develop in this framework points at a clear

pattern of insiders selling intensity preceding crashes (high in the far past and low in

the near past) with no symmetric counterpart in the case of insiders purchases and

jumps. Our empirical study shows that the evidence in the US markets is consistent

with all the model predictions. These results highlight an informative role of insiders

sales completely ignored in the literature.
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We believe this paper sets the starting point in a new way of thinking about insider

trading and crashes. As such, it leaves many questions unanswered and open lines for

further research. First, it would be interesting to see if equity or options portfolios based

on the sequence of insider sales our model suggests exhibit abnormal performance. It

would also be interesting to perform a more disaggregate analysis sorting our sample

according to firm characteristics (such as size) that we think are correlated with the

intensity of the diversification motive for insider sales in each of the firms. This would

allow us to concentrate in a specific segment of the market in which ex-ante we should

expect our results to be stronger (weaker) because of a smaller (larger) noise introduced

by noninformationally driven insider sales. Finally, from an international perspective,

it would be interesting performing the same tests performed here across countries with

different insider trading regulations.
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A Appendix

A.1 Proof of Theorem 1

Region A. From the study of the unconstrained economy, we have that the demand

of the representative insider is given by:

nI(y, xI , p) = Max

(
f + θ − p

aIσ2
ε

; ν
)

= Max

(
n− (1− λI) ν

λI
; ν

)

=
n− (1− λI) ν

λI

since ν < N .

It can easily be checked that any price p > p(θ) corresponds to one and only one

θ. Thus prices reveal θ in Region A and, as seen in the study of the uncostrained

economy, the demand of the uninformed traders is given by:

nU (p) = Max

(
(1 + m2)(f − p) + θ

aU ((1 + m2)σ2
ε + m2)

; ν
)

= Max


−m2θ + (1+m2)σ2

ε aI

λI
(n− (1− λI) ν)

aU ((1 + m2) σ2
ε + m2)

; ν


 = ν if θ ≥ θ

Thus, the market clearing condition is satisfied in Region A.
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Region B. The derivation of equilibrium prices and equilibrium holdings in this

region is identical to that of the equilibrium of the economy without portfolio

constraints. The restriction that equilibrium holdings need to be larger than ν

for both types of agents provides the condition θ > θ ≥ θ

Region C. For insiders, we have as before:

nI(y, xI , p) = Max

(
f + θ − p

aIσ2
ε

; ν
)

= Max

(
(1− λI) m2θ +

[(
1 + m2

)
σ2

ε + m2)
]
(aUn− λIaUν)

aIσ2
ε (1− λI) (1 + m2)

; ν

)

= ν if θ 6 θ

It can easily be checked that any price p such that p(θ) > p > p(θ∗) corresponds

to one and only one θ. Thus prices reveal θ in Region C and, from the study of

the unconstrained economy, the demand of the uninformed trader is given by:

nU (p) = Max

(
(1 + m2)(f − p) + θ

aU ((1 + m2) σ2
ε + m2)

; ν
)

= Max

(
n− λIν

1− λI
; ν

)
=

n− λIν

1− λI

since ν < N . Thus, the market clearing condition is satisfied in Region C.

Region D. We first need to show that t∗ is well defined. First notice that the LHS

of equation (2.3) is a continuous function of t and that its limit when t → +∞ is

equal to +∞. Applying L’Hospital rule twice, one can show that the limit of the

LHS of equation (2.3) when t → −∞ is equal to −∞.Thus, equation (2.3) has at

least one root and there exists t∗ such that for any t 6 t∗:

t +
1√

1 + m2

f

(
t+aU

n−λIν

1−λI√
1+m2

)

F

(
t+aU

n−λIν

1−λI√
1+m2

) + aU (1 + σ2
ε )

n− λIν

1− λI
6 vaIσ

2
ε

For insiders, we have as before:

nI(y, xI , p) = Max

(
f + θ − P

aIσ2
ε

; ν
)

= ν
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The last expression follows from the fact that θ∗ 6 t∗ implies:

f + θ − P

aIσ2
ε

=
1

aIσ2
ε


θ +

1√
1 + m2

f

(
θ∗+aU

n−λIν

1−λI√
1+m2

)

F

(
θ∗+aU

n−λIν

1−λI√
1+m2

) + aU (1 + σ2
ε )

n− λIν

1− λI


 < ν

Notice that the equilibrium price is constant in Region D and different from the

equilibrium price in any of the other three regions. Indeed, it is easy to show that

it is strictly smaller. Using the expressions in Theorem 1, we have:

pc(θ∗)−p∗ =
θ∗

1 + m2
+

1
1 + m2

aU (n− λIν)
1− λI

+
1√

1 + m2

f
(

θ∗√
1+m2

+ 1√
1+m2

aU (n−λIν)
1−λI

)

F
(

θ∗√
1+m2

+ 1√
1+m2

aU (n−λIν)
1−λI

)

or,

pc(θ∗)− p∗ =
1√

1 + m2

(
x +

f(x)
F (x)

)

where, x ≡ θ∗√
1+m2

+ 1√
1+m2

aU (n−λIν)
1−λI

.

Since f(·) and F (·) are the density and the CDF of the normal distribution, re-

spectively, it is immediate that x+ f(x)
F (x) > 0, since x

∫ x
−∞ e−

1
2
t2dt >

∫ x
−∞ te−

1
2
t2dt =

−e−
1
2
x2

. This proves that pc(θ∗) > p∗.

Therefore observing the equilibrium price of Region D, P (θ) = p∗ is equivalent

to observing that θ < θ∗.Thus the expected utility of an uninformed agent who

observes the equilibrium price in Region D can be written as follows:

E [U(wU ) | P = p∗] = −E
[
e−aUnU (f+y+ε−P )|θ < θ∗

]
=

= − 1
F (θ∗)

∫ θ∗

−∞
E

[
e−aUnU (f+y+ε−P )|θ

]
f(θ)dθ

= −e−aUnU (f−P )}
F (θ∗)

∫ θ∗

−∞
exp(−aUnUE(y|θ) +

1
2
a2

Un2
U

(
V ar(y|θ) + σ2

ε

)
)f(θ)dθ

= −e
−aUnU (f−P )+ 1

2
a2

Un2
U

“
m2

1+m2 +σ2
ε

”

F (θ∗)

∫ θ∗

−∞
exp(−aUnU

θ

1 + m2
)f(θ)dθ

= −e−aUnU (f−P )+ 1
2
a2

Un2
U(1+σ2

ε )

F (θ∗)
F

(
θ∗ + aUnU√

1 + m2

)
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Taking the first order conditions and dividing left and right by aU

F

„
θ∗+aU nU√

1+m2

« , we

find that the demand of the uninformed trader, nU , must satisfy the following

condition:

1√
1 + m2

f
(

θ∗+aUnU√
1+m2

)

F
(

θ∗+aUnU√
1+m2

) + P − f + aU (1 + σ2
ε )nU = 0

It is straightforward to check that the equilibrium prices and holdings given in the

Theorem for Region D satisfy both the above equation (optimality) and market

clearing.
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A.2 Figures

.0
0
5

.0
1

.0
1
5

.0
2

.0
2
5

.0
3

%
 o

f 
T

o
ta

l 
M

ar
k
et

 C
ap

it
al

iz
at

io
n

19
86

m
10

19
86

m
11

19
86

m
12

19
87

m
1

19
87

m
2

19
87

m
3

19
87

m
4

19
87

m
5

19
87

m
6

19
87

m
7

19
87

m
8

19
87

m
9

Date

(a) Managers sales before October, 1987

(Largest S&P 500 “drop” in period 1986-

2002)
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Figure 1: Managers transactions before large market movements.

This graphs show the evolution of managers´ open market or private trades in common stocks traded in NYSE,

AMEX and Nasdaq that appear in the CRSP dataset, before the largest market movements in the S&P 500

during the 1986-2002 period. The data on insider transactions comes from Thompson Financial Data Fillings

dataset. We exclude stocks with price smaller than $2 at the beginning of each calendar year, amended insider

trading records, transactions involving less than 100 shares, and fillings in which the reported transaction price

was not within 20% of the CRSP closing price on that day, or that involved more than 20% of the number of

shares outstanding. We consider as managers the chairman, directors, CEOs, CFOs, officers, presidents, vice

presidents, affiliate persons, members of committees, etc. % of Total Market Capitalization is defined as 100

times the value of all the managers trades during the month (number of shares traded times the transaction

price or the closing price of the day if the transaction price is missing) divided by the total market value of our

universe of firms at the beginning of the month.
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Figure 2: Equilibrium prices and insider holdings.

This figure displays a parametric example of the equilibrium (prices and holdings) described in Theorem 1

resulting in a 10% crash. The parameter values are: aI = 1, aU = 0.4, λI = 0.3, n = 10, σ2
ε = 50, ν = 9.90,

σ2
εz = 1, kI = 5, and f = 300.

39



0
1,

00
0

2,
00

0
3,

00
0

4,
00

0
5,

00
0

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

ERCRASH MMCRASH
RAWCRASH

Figure 3: Number of crashes over time.

The figure reports the evolution of the aggregate number of crashes for common stocks traded in NYSE, AMEX

and Nasdaq that appear in CRSP dataset, excluding stocks with a price smaller than $2 at the beginning of

each calendar year. The figure is reported for the following alternative definitions of a crash:

ERCRASHi,t =

8
<
:

1, if rER
i,t − r̄ER

i,t ≤ −2σER
i,t ;

0, otherwise.

MMCRASHi,t =

8
<
:

1, if rMM
i,t − r̄MM

i,t ≤ −2σMM
i,t ;

0, otherwise.

RAWCRASHi,t =

8
<
:

1, if ri,t − r̄i,t ≤ −2σi,t ;

0, otherwise.

where: rER
i,t ≡ ri,t−rm,t, rMM

i,t ≡ ri,t−(rf,t +βi,t(rm,t−rf,t)), ri,t is the raw return of stock i in month t, rm,t

is the monthly return of the CRSP equally weighted market portfolio, βi,t is the beta of the stock estimated

over a sixty-month rolling window and rf,t is the risk-free rate. r̄k
i,t and σk

i,t, k = ER, MM, ∅, denote the sample

mean and standard deviation of the corresponding k variable and are computed using a five-year rolling window.
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Figure 4: Number of jumps over time.

The figure reports the evolution of the aggregate number of jumps for common stocks traded in NYSE, AMEX

and Nasdaq that appear in CRSP dataset, excluding stocks with a price smaller than $2 at the beginning of

each calendar year. The figure is reported for the following alternative definitions of a jump:

ERJUMPi,t =

8
<
:

1, if rER
i,t − r̄ER

i,t ≥ 2σER
i,t ;

0, otherwise.

MMJUMPi,t =

8
<
:

1, if rMM
i,t − r̄MM

i,t ≥ 2σMM
i,t ;

0, otherwise.

RAWJUMPi,t =

8
<
:

1, if ri,t − r̄i,t ≥ 2σi,t ;

0, otherwise.

where: rER
i,t ≡ ri,t−rm,t, rMM

i,t ≡ ri,t−(rf,t +βi,t(rm,t−rf,t)), ri,t is the raw return of stock i in month t, rm,t

is the monthly return of the CRSP equally weighted market portfolio, βi,t is the beta of the stock estimated

over a sixty-month rolling window and rf,t is the risk-free rate. r̄k
i,t and σk

i,t, k = ER, MM, ∅, denote the sample

mean and standard deviation of the corresponding k variable and are computed using a five-year rolling window.
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(c) Insider transactions: average fraction of

firm’s market capitalization

Figure 5: Evolution of insider trading activity.

These figures show the evolution over time of several measures of aggregate insider trading activity. Panel (a)

plots the average number of sales and purchases per month and firm, and includes companies without any trading;

panel (b) the total monthly dollar value of insider sales and purchases expressed in terms of 1995 million dollars;

panel (c) the average monthly fraction of insider sales and purchases to company market capitalization, where

market capitalization is computed using the closing price of the day of the trade. The sample consists of insiders

open market or private sales and purchases from 1986 to 2002 in common stocks traded in NYSE, AMEX and

Nasdaq markets that appear in CRSP dataset; the data on insider transactions comes from Thompson Financial

Data Fillings dataset. We exclude stocks with a price smaller than $2 at the beginning of each calendar year,

amended insider trading records, transactions involving less than 100 shares, and fillings in which the reported

transaction price was not within 20% of the CRSP closing price on that day,or that involved more than the 20%

of the number of shares outstanding.
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A.3 Tables

Table 1: Correlation between number of crashes.

ERCRASH MMCRASH RAWCRASH

ERCRASH 1

MMCRASH 0.7145 1

RAWCRASH 0.5291 0.4906 1

The table reports the correlation matrix for the number of crashes for the period 1987-2002, for common stocks

traded in NYSE, AMEX and Nasdaq that appear in CRSP dataset, excluding stocks with a price smaller than

$2 at the beginning of each calendar year, under the following three alternative definitions of a crash:

ERCRASHi,t =

8
<
:

1, if rER
i,t − r̄ER

i,t ≤ −2σER
i,t ;

0, otherwise.

MMCRASHi,t =

8
<
:

1, if rMM
i,t − r̄MM

i,t ≤ −2σMM
i,t ;

0, otherwise.

RAWCRASHi,t =

8
<
:

1, if ri,t − r̄i,t ≤ −2σi,t ;

0, otherwise.

where: rER
i,t ≡ ri,t−rm,t, rMM

i,t ≡ ri,t−(rf,t +βi,t(rm,t−rf,t)), ri,t is the raw return of stock i in month t, rm,t

is the monthly return of the CRSP equally weighted market portfolio, βi,t is the beta of the stock estimated

over a sixty-month rolling window and rf,t is the risk-free rate. r̄k
i,t and σk

i,t, k = ER, MM, ∅, denote the sample

mean and standard deviation of the corresponding k variable and are computed using a five-year rolling window.
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Table 2: Correlation between number of jumps.

ERJUMP MMJUMP RAWJUMP

ERJUMP 1

MMJUMP 0.7815 1

RAWJUMP 0.7429 0.7003 1

The table reports the correlation matrix for the number of jumps for the period 1987-2002, for common stocks

traded in NYSE, AMEX and Nasdaq that appear in CRSP dataset, excluding stocks with a price smaller than

$2 at the beginning of each calendar year, under the following three alternative definitions of a jump:

ERJUMPi,t =

8
<
:

1, if rER
i,t − r̄ER

i,t ≥ 2σER
i,t ;

0, otherwise.

MMJUMPi,t =

8
<
:

1, if rMM
i,t − r̄MM

i,t ≥ 2σMM
i,t ;

0, otherwise.

RAWJUMPi,t =

8
<
:

1, if ri,t − r̄i,t ≥ 2σi,t ;

0, otherwise.

where: rER
i,t ≡ ri,t−rm,t, rMM

i,t ≡ ri,t−(rf,t +βi,t(rm,t−rf,t)), ri,t is the raw return of stock i in month t, rm,t

is the monthly return of the CRSP equally weighted market portfolio, βi,t is the beta of the stock estimated

over a sixty-month rolling window and rf,t is the risk-free rate. r̄k
i,t and σk

i,t, k = ER, MM, ∅, denote the sample

mean and standard deviation of the corresponding k variable and are computed using a five-year rolling window.
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Table 3: Insider trading activity: summary statistics.

Large

Management Shareholders Others Total

Purchases

Fraction 0.483 0.052 0.013 0.501

# of Trades 2.927 0.845 0.052 3.824

Tot Million $ $1,891 $2,482 $94 $4,467

% Mkt Cap 0.213% 0.168% 0.008% 0.388%

Sales

Fraction 0.509 0.088 0.031 0.531

# of Trades 6.838 1.000 0.136 7.975

Tot Million $ $24,045 $13,394 $783 $38,222

% Mkt Cap 0.561% 0.348% 0.023% 0.932%

This table presents some summary statistics on aggregate insider trading activity. Fraction, shows the average

fraction of firms with at least one insider trade per year; # of Trades, is the average number of sales or purchases

per year and firm, and includes companies without any trading; Tot Million $ is the average of the annual dollar

value of insider trades per year expressed in terms of 1995 million dollars. % Mkt Cap is the ratio of the average

of the value of insiders trades per company and year to market capitalization in percentage terms, where market

capitalization is computed using the closing price of the day of the trade. The sample consists of insiders open

market or private sales and purchases from 1986 to 2002 in common stocks traded in NYSE, AMEX and Nasdaq

markets that appear in CRSP dataset; the data on insider transactions comes from Thompson Financial Data

Fillings dataset. We exclude stocks with a price smaller than $2 at the beginning of each calendar year, amended

insider trading records, transactions involving less than 100 shares, and fillings in which the reported transaction

price was not within 20% of the CRSP closing price on that day, or that involved more than the 20% of the

number of shares outstanding.
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Table 4: Preliminary regression: insiders trading volume and crashes.

(1) (2)

ERCRASH MMCRASH

INSTVt−1 -0.039** -0.032**

(0.011) (0.010)

INSTVt−2,t−12 0.090+ 0.039

(0.053) (0.047)

ERt−1,t−24 0.001** 0.001**

(0.000) (0.000)

TTVt−1 0.015** 0.012**

(0.002) (0.002)

TTVt−2,t−12 -0.002 0.012**

(0.003) (0.003)

Observations 789658 789658

Standard errors in parentheses

+ significant at 10%; * significant at 5%; ** significant at 1%

In columns 1 and 2 we report the results obtained in the following two preliminary regressions for crashes:

ERCRASHi,t = αi + γt + β1INSTVi,t−1 + β2INSTVi,t−2,t−12 + β3ERi,t−1,t−24

+β4TTVi,t−1 + β4TTVi,t−2,t−12 + εi,t

MMCRASHi,t = αi + γt + β1INSTVi,t−1 + β2INSTVi,t−2,t−12 + β3ERi,t−1,t−24

+β4TTVi,t−1 + β4TTVi,t−2,t−12 + εi,t

where i and t are indexes for the company and the calendar month, respectively. In the estimation we use the Newey-West

standard errors to control for autocorrelation and heteroscedasticity. The dependent variables are defined as:

ERCRASHi,t =

8
<
:

1, if rER
i,t − r̄ER

i,t ≤ −2σER
i,t ;

0, otherwise.
MMCRASHi,t =

8
<
:

1, if rMM
i,t − r̄MM

i,t ≤ −2σMM
i,t ;

0, otherwise.

where: rER
i,t ≡ ri,t − rm,t, rMM

i,t ≡ ri,t − (rf,t + βi,t(rm,t − rf,t)), ri,t is the raw return of stock i in month t, rm,t is the

monthly return of the CRSP equally weighted market portfolio, βi,t is the beta of the stock estimated over a sixty-month rolling

window and rf,t is the risk-free rate. r̄k
i,t and σk

i,t, k = ER, MM, ∅, denote the sample mean and standard deviation of the

corresponding k variable and are computed using a five-year rolling window. Regarding the independent variables: INSTVi,t−1

is the past month trading volume by insiders in stock i, INSTVi,t−2,t−12 is the average trading volume by insiders in stock i in

the past year (excluding the previous month), TTVi,t−1 is the past month total trading volume in stock i, TTVi,t−2,t−12 is the

average total trading volume in stock i in the past year (excluding the previous month) and ERi,t−1,t−24 is stock‘s i cumulative

excess return over the CRSP equally weighted market portfolio for the previous two years. The sample consists of insiders open

market or private sales and purchases from 1986 to 2002 in common stocks traded in NYSE, AMEX and Nasdaq markets that

appear in CRSP dataset; the data on insider transactions comes from Thompson Financial Data Fillings dataset. We exclude

stocks with price smaller than $2 at the beginning of each calendar year, amended insider trading records, transactions involving

less than 100 shares, and fillings in which the reported transaction price was not within 20% of the CRSP closing price on that

day, or that involved more than the 20% of the number of shares outstanding.
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Table 5: Leading regression: insider sales and crashes.

(1) (2)

ERCRASH MMCRASH

INSSALt−1 -0.025+ -0.028*

(0.013) (0.011)

INSSALt−2,t−12 0.232** 0.127*

(0.068) (0.059)

ERt−1,t−24 0.001** 0.001**

(0.000) (0.000)

TTVt−1 0.015** 0.012**

(0.002) (0.002)

TTVt−2,t−12 -0.002 0.012**

(0.003) (0.003)

Observations 789658 789658

Standard errors in parentheses

+ significant at 10%; * significant at 5%; ** significant at 1%

In columns 1 and 2 we report the results obtained in the following two leading regressions for crashes:

ERCRASHi,t = αi + γt + β1INSSALi,t−1 + β2INSSALi,t−2,t−12 + β3ERi,t−1,t−24

+β4TTVi,t−1 + β4TTVi,t−2,t−12 + εi,t

MMCRASHi,t = αi + γt + β1INSSALi,t−1 + β2INSSALi,t−2,t−12 + β3ERi,t−1,t−24

+β4TTVi,t−1 + β4TTVi,t−2,t−12 + εi,t

where i and t are indexes for the company and the calendar month, respectively. In the estimation we use the Newey-West

standard errors to control for autocorrelation and heteroscedasticity. The dependent variables are defined as:

ERCRASHi,t =

8
<
:

1, if rER
i,t − r̄ER

i,t ≤ −2σER
i,t ;

0, otherwise.
MMCRASHi,t =

8
<
:

1, if rMM
i,t − r̄MM

i,t ≤ −2σMM
i,t ;

0, otherwise.

where: rER
i,t ≡ ri,t − rm,t, rMM

i,t ≡ ri,t − (rf,t + βi,t(rm,t − rf,t)), ri,t is the raw return of stock i in month t, rm,t is the

monthly return of the CRSP equally weighted market portfolio, βi,t is the beta of the stock estimated over a sixty-month rolling

window and rf,t is the risk-free rate. r̄k
i,t and σk

i,t, k = ER, MM, ∅, denote the sample mean and standard deviation of the

corresponding k variable and are computed using a five-year rolling window. Regarding the independent variables: INSSALi,t−1

are the past month insiders’ sales in stock i, INSSALi,t−2,t−12 is the average of the insiders sales in stock i during the period

t− 12 to t− 2, TTVi,t−1 is the past month total trading volume in stock i, TTVi,t−2,t−12 is the average total trading volume

in stock i during the period t − 12 to t − 2 and ERi,t−1,t−24 is stock‘s i cumulative excess return over the CRSP equally

weighted market portfolio for the previous two years. The sample consists of insiders open market or private sales and purchases

from 1986 to 2002 in common stocks traded in NYSE, AMEX and Nasdaq markets that appear in CRSP dataset; the data on

insider transactions comes from Thompson Financial Data Fillings dataset. We exclude stocks with price smaller than $2 at

the beginning of each calendar year, amended insider trading records, transactions involving less than 100 shares, and fillings in

which the reported transaction price was not within 20% of the CRSP closing price on that day, or that involved more than the

20% of the number of shares outstanding.
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Table 6: Leading regression: insider purchases and jumps.

(1) (2)

ERJUMP MMJUMP

INSPURCHt−1 0.087+ 0.087*

(0.044) (0.043)

INSPURCHt−2,t−12 0.162 0.171

(0.140) (0.130)

ERt−1,t−24 -0.007** -0.006**

(0.001) (0.000)

TTVt−1 0.015** 0.010**

(0.003) (0.002)

TTVt−2,t−12 -0.070** -0.056**

(0.004) (0.004)

Observations 789658 789658

Standard errors in parentheses

+ significant at 10%; * significant at 5%; ** significant at 1%

In columns 1 and 2 we report the results obtained in the following two leading regressions for jumps:

ERJUMPi,t = αi + γt + β1INSPURCHi,t−1 + β2INSPURCHi,t−2,t−12

+β3ERi,t−1,t−24 + β4TTVi,t−1 + β4TTVi,t−2,t−12 + εi,t

MMJUMPi,t = αi + γt + β1INSPURCHi,t−1 + β2INSPURCHi,t−2,t−12

+β3ERi,t−1,t−24 + β4TTVi,t−1 + β4TTVi,t−2,t−12 + εi,t

where i and t are indexes for the company and the calendar month, respectively. In the estimation we use the Newey-West

standard errors to control for autocorrelation and heteroscedasticity. The dependent variables are defined as:

ERJUMPi,t =

8
<
:

1, if rER
i,t − r̄ER

i,t ≥ 2σER
i,t ;

0, otherwise.
MMJUMPi,t =

8
<
:

1, if rMM
i,t − r̄MM

i,t ≥ 2σMM
i,t ;

0, otherwise.

where: rER
i,t ≡ ri,t−rm,t, rMM

i,t ≡ ri,t−(rf,t+βi,t(rm,t−rf,t)), ri,t is the raw return of stock i in month t, rm,t is the monthly

return of the CRSP equally weighted market portfolio, βi,t is the beta of the stock estimated over a sixty-month rolling window

and rf,t is the risk-free rate. r̄k
i,t and σk

i,t, k = ER, MM, ∅, denote the sample mean and standard deviation of the corresponding

k variable and are computed using a five-year rolling window. Regarding the independent variables: INSPURCHi,t−1 are the

past month insiders’ purchases in stock i, INSPURCHi,t−2,t−12 is the average of the insiders purchases in stock i during the

period t− 12 to t− 2, TTVi,t−1 is the past month total trading volume in stock i, TTVi,t−2,t−12 is the average total trading

volume in stock i during the period t−12 to t−2 and ERi,t−1,t−24 is stock‘s i cumulative excess return over the CRSP equally

weighted market portfolio for the previous two years. The sample consists of insiders open market or private sales and purchases

from 1986 to 2002 in common stocks traded in NYSE, AMEX and Nasdaq markets that appear in CRSP dataset; the data on

insider transactions comes from Thompson Financial Data Fillings dataset. We exclude stocks with price smaller than $2 at

the beginning of each calendar year, amended insider trading records, transactions involving less than 100 shares, and fillings in

which the reported transaction price was not within 20% of the CRSP closing price on that day, or that involved more than the

20% of the number of shares outstanding.
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Table 8: Robustness checks: the logit model.

(1) (2) (3) (4)

ERCRASH MMCRASH ERJUMP MMJUMP

INSSALt−1 -2.476* -3.564*

(1.122) (1.404)

INSSALt−2,t−12 2.970+ -1.196

(1.523) (1.916)

ERt−1,t−24 -0.010 -0.003 -0.280** -0.265**

(0.006) (0.005) (0.013) (0.012)

TTVt−1 0.234** 0.194** 0.367** 0.305**

(0.040) (0.034) (0.045) (0.039)

TTVt−2,t−12 -0.619** -0.002 -0.878** -1.098**

(0.072) (0.059) (0.080) (0.081)

INSPURCHt−1 0.811+ 0.912*

(0.433) (0.442)

INSPURCHt−2,t−12 0.439 1.920

(2.388) (2.477)

Observations 789658 789658 789658 789658

Standard errors in parentheses

+ significant at 10%; * significant at 5%; ** significant at 1%

In this table we report the estimation of the logit version of our leading regressions for crashes and jumps. In the estimation

we only allow for year effects and use the Newey-West standard errors to control for autocorrelation and heteroscedasticity. The

depended variables in the regressions are defined as follows:

ERCRASHi,t =

8
<
:

1, if rER
i,t − r̄ER

i,t ≤ −2σER
i,t ;

0, otherwise.
ERJUMPi,t =

8
<
:

1, if rER
i,t − r̄ER

i,t ≥ 2σER
i,t ;

0, otherwise.

MMCRASHi,t =

8
<
:

1, if rMM
i,t − r̄MM

i,t ≤ −2σMM
i,t ;

0, otherwise.
MMJUMPi,t =

8
<
:

1, if rMM
i,t − r̄MM

i,t ≥ 2σMM
i,t ;

0, otherwise.

where: rER
i,t ≡ ri,t − rm,t, rMM

i,t ≡ ri,t − (rf,t + βi,t(rm,t − rf,t)), ri,t is the raw return of stock i in month t, rm,t is the

monthly return of the CRSP equally weighted market portfolio, βi,t is the beta of the stock estimated over a sixty-month rolling

window and rf,t is the risk-free rate. r̄k
i,t and σk

i,t, k = ER, MM, ∅, denote the sample mean and standard deviation of the

corresponding k variable and are computed using a five-year rolling window. Regarding the independent variables: INSSALi,t−1

are the past month insiders’ sales in stock i, INSSALi,t−2,t−12 is the average of the insiders sales in stock i during the period

t − 12 to t − 2, INSPURCHi,t−1 are the past month insiders’ purchases in stock i, INSPURCHi,t−2,t−12 is the average

of the insiders purchases in stock i during the period t − 12 to t − 2 , TTVi,t−1 is the past month total trading volume in

stock i, TTVi,t−2,t−12 is the average total trading volume in stock i during the period t − 12 to t − 2 and ERi,t−1,t−24 is

stock‘s i cumulative excess return over the CRSP equally weighted market portfolio for the previous two years. The sample

consists of insiders open market or private sales and purchases from 1986 to 2002 in common stocks traded in NYSE, AMEX and

Nasdaq markets that appear in CRSP dataset; the data on insider transactions comes from Thompson Financial Data Fillings

dataset. We exclude stocks with price smaller than $2 at the beginning of each calendar year, amended insider trading records,

transactions involving less than 100 shares, and fillings in which the reported transaction price was not within 20% of the CRSP

closing price on that day, or that involved more than the 20% of the number of shares outstanding.
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Table 9: Robustness checks: the probit model.

(1) (2) (3) (4)

ERCRASH MMCRASH ERJUMP MMJUMP

INSSALt−1 -0.988* -1.442*

(0.454) (0.586)

INSSALt−2,t−12 1.547* -0.393

(0.680) (0.806)

ERt−1,t−24 -0.006* -0.002 -0.105** -0.102**

(0.003) (0.002) (0.009) (0.006)

TTVt−1 0.136** 0.111** 0.192** 0.162**

(0.020) (0.017) (0.023) (0.020)

TTVt−2,t−12 -0.261** 0.000 -0.398** -0.488**

(0.032) (0.027) (0.038) (0.038)

INSPURCHt−1 0.517* 0.564*

(0.263) (0.269)

INSPURCHt−2,t−12 0.610 1.091

(1.067) (1.129)

Observations 789658 789658 789658 789658

Standard errors in parentheses

+ significant at 10%; * significant at 5%; ** significant at 1%

In this table we report the estimation of the probit version of our leading regressions for crashes and jumps. In the estimation

we only allow for year effects and use the Newey-West standard errors to control for autocorrelation and heteroscedasticity. The

depended variables in the regressions are defined as follows:

ERCRASHi,t =

8
<
:

1, if rER
i,t − r̄ER

i,t ≤ −2σER
i,t ;

0, otherwise.
ERJUMPi,t =

8
<
:

1, if rER
i,t − r̄ER

i,t ≥ 2σER
i,t ;

0, otherwise.

MMCRASHi,t =

8
<
:

1, if rMM
i,t − r̄MM

i,t ≤ −2σMM
i,t ;

0, otherwise.
MMJUMPi,t =

8
<
:

1, if rMM
i,t − r̄MM

i,t ≥ 2σMM
i,t ;

0, otherwise.

where: rER
i,t ≡ ri,t − rm,t, rMM

i,t ≡ ri,t − (rf,t + βi,t(rm,t − rf,t)), ri,t is the raw return of stock i in month t, rm,t is the

monthly return of the CRSP equally weighted market portfolio, βi,t is the beta of the stock estimated over a sixty-month rolling

window and rf,t is the risk-free rate. r̄k
i,t and σk

i,t, k = ER, MM, ∅, denote the sample mean and standard deviation of the

corresponding k variable and are computed using a five-year rolling window. Regarding the independent variables: INSSALi,t−1

are the past month insiders’ sales in stock i, INSSALi,t−2,t−12 is the average of the insiders sales in stock i during the period

t − 12 to t − 2, INSPURCHi,t−1 are the past month insiders’ purchases in stock i, INSPURCHi,t−2,t−12 is the average

of the insiders purchases in stock i during the period t − 12 to t − 2 , TTVi,t−1 is the past month total trading volume in

stock i, TTVi,t−2,t−12 is the average total trading volume in stock i during the period t − 12 to t − 2 and ERi,t−1,t−24 is

stock‘s i cumulative excess return over the CRSP equally weighted market portfolio for the previous two years. The sample

consists of insiders open market or private sales and purchases from 1986 to 2002 in common stocks traded in NYSE, AMEX and

Nasdaq markets that appear in CRSP dataset; the data on insider transactions comes from Thompson Financial Data Fillings

dataset. We exclude stocks with price smaller than $2 at the beginning of each calendar year, amended insider trading records,

transactions involving less than 100 shares, and fillings in which the reported transaction price was not within 20% of the CRSP

closing price on that day, or that involved more than the 20% of the number of shares outstanding.
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Table 11: Robustness checks: large raw returns.

(1) (2)

RAWCRASH RAWJUMP

INSSALt−1 0.007

(0.017)

INSSALt−2,t−12 0.343**

(0.070)

INSPURCHt−1 0.117*

(0.054)

INSPURCHt−2,t−12 0.117

(0.146)

ERt−1,t−24 0.001** -0.006**

(0.000) (0.000)

TTVt−1 0.011** 0.017**

(0.002) (0.003)

TTVt−2,t−24 0.007* -0.062**

(0.003) (0.004)

Observations 789658 789658

Standard errors in parentheses

+ significant at 10%; * significant at 5%; ** significant at 1%

In this table we report the equivalent to tables 5 and 6 (leading regressions for crashes and jumps, respectively) but using a

definition of crashes and jumps based on raw returns rather than returns in excess of the CRSP equally weighted market portfolio

or the returns predicted by the market model. As before, in the estimation we allow for fixed firm and year effects and use the

Newey-West standard errors to control for autocorrelation and heteroscedasticity. The depended variables in the regressions are

defined as follows:

RAWCRASHi,t =

8
<
:

1, if ri,t − r̄i,t ≤ −2σi,t ;

0, otherwise.
RAWJUMPi,t =

8
<
:

1, if ri,t − r̄i,t ≥ 2σi,t ;

0, otherwise.

In these expressions we have: ri,t is the raw return of stock i in month t, r̄i,t and σi,t, denote the sample means and stan-

dard deviations of the raw return and are computed using a five-year rolling window. Regarding the independent variables:

INSSALi,t−1 are the past month insiders’ sales in stock i, INSSALi,t−2,t−12 is the average of the insiders sales in stock i

during the period t−12 to t−2, INSPURCHi,t−1 are the past month insiders’ purchases in stock i, INSPURCHi,t−2,t−12 is

the average of the insiders purchases in stock i during the period t−12 to t−2 , TTVi,t−1 is the past month total trading volume

in stock i, TTVi,t−2,t−12 is the average total trading volume in stock i during the period t − 12 to t − 2 and ERi,t−1,t−24

is stock‘s i cumulative excess return over the CRSP equally weighted market portfolio for the previous two years. The sample

consists of insiders open market or private sales and purchases from 1986 to 2002 in common stocks traded in NYSE, AMEX and

Nasdaq markets that appear in CRSP dataset; the data on insider transactions comes from Thompson Financial Data Fillings

dataset. We exclude stocks with price smaller than $2 at the beginning of each calendar year, amended insider trading records,

transactions involving less than 100 shares, and fillings in which the reported transaction price was not within 20% of the CRSP

closing price on that day, or that involved more than the 20% of the number of shares outstanding.
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Table 12: Leading regression when no earning announcements.

Not Earning Announcement

(1) (2) (3) (4)

EWCRASH MMCRASH EWJUMP MMJUMP

INSSALt−1 -0.028* -0.028**

(0.011) (0.009)

INSSALt−2,t−12 0.274** 0.156*

(0.086) (0.072)

INSPURCHt−1 0.083 0.080

(0.055) (0.051)

INSPURCHt−2,t−12 0.130 0.310

(0.227) (0.211)

ERt−1,t−24 0.001** 0.001** -0.006** -0.005**

(0.000) (0.000) (0.000) (0.000)

TTVt−1 0.015** 0.012** 0.015** 0.010**

(0.002) (0.002) (0.003) (0.002)

TTVt−2,t−12 -0.005 0.009** -0.066** -0.050**

(0.003) (0.003) (0.005) (0.004)

Observations 463395 463395 463395 463395

Standard errors in parentheses

+ significant at 10%; * significant at 5%; ** significant at 1%

In this table we report the results of the estimation of our leading regression for crashes and jumps when these do not take place

in an earning announcement month. As before, in the estimation we allow for fixed firm and year effects and use the Newey-West

standard errors to control for autocorrelation and heteroscedasticity. The depended variables in the regressions are defined as

follows:

ERCRASHi,t =

8
<
:

1, if rER
i,t − r̄ER

i,t ≤ −2σER
i,t ;

0, otherwise.
ERJUMPi,t =

8
<
:

1, if rER
i,t − r̄ER

i,t ≥ 2σER
i,t ;

0, otherwise.

MMCRASHi,t =

8
<
:

1, if rMM
i,t − r̄MM

i,t ≤ −2σMM
i,t ;

0, otherwise.
MMJUMPi,t =

8
<
:

1, if rMM
i,t − r̄MM

i,t ≥ 2σMM
i,t ;

0, otherwise.

where: rER
i,t ≡ ri,t − rm,t, rMM

i,t ≡ ri,t − (rf,t + βi,t(rm,t − rf,t)), ri,t is the raw return of stock i in month t, rm,t is the

monthly return of the CRSP equally weighted market portfolio, βi,t is the beta of the stock estimated over a sixty-month rolling

window and rf,t is the risk-free rate. r̄k
i,t and σk

i,t, k = ER, MM, ∅, denote the sample mean and standard deviation of the

corresponding k variable and are computed using a five-year rolling window. Regarding the independent variables: INSSALi,t−1

are the past month insiders’ sales in stock i, INSSALi,t−2,t−12 is the average of the insiders sales in stock i during the period

t − 12 to t − 2, INSPURCHi,t−1 are the past month insiders’ purchases in stock i, INSPURCHi,t−2,t−12 is the average

of the insiders purchases in stock i during the period t − 12 to t − 2, TTVi,t−1 is the past month total trading volume in

stock i, TTVi,t−2,t−12 is the average total trading volume in stock i during the period t − 12 to t − 2 and ERi,t−1,t−24 is

stock‘s i cumulative excess return over the CRSP equally weighted market portfolio for the previous two years. The sample

consists of insiders open market or private sales and purchases from 1986 to 2002 in common stocks traded in NYSE, AMEX and

Nasdaq markets that appear in CRSP dataset; the data on insider transactions comes from Thompson Financial Data Fillings

dataset. We exclude stocks with price smaller than $2 at the beginning of each calendar year, amended insider trading records,

transactions involving less than 100 shares, and fillings in which the reported transaction price was not within 20% of the CRSP

closing price on that day, or that involved more than the 20% of the number of shares outstanding.
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Table 13: Leading regression when earning announcements.

Earning Announcement

(1) (2) (3) (4)

ERCRASH MMCRASH ERJUMP MMJUMP

INSSALt−1 0.005 -0.032

(0.043) (0.039)

INSSALt−2,t−12 0.099 0.039

(0.103) (0.088)

INSPURCHt−1 0.118 0.079

(0.078) (0.074)

INSPURCHt−2,t−12 0.324 0.050

(0.213) (0.176)

ERt−1,t−24 0.002** 0.003** -0.008** -0.007**

(0.000) (0.000) (0.001) (0.001)

TTVt−1 0.018** 0.017** 0.022** 0.019**

(0.004) (0.004) (0.006) (0.005)

TTVt−2,t−12 -0.002 0.009+ -0.085** -0.069**

(0.005) (0.005) (0.008) (0.007)

Observations 224993 224993 224993 224993

Standard errors in parentheses

+ significant at 10%; * significant at 5%; ** significant at 1%

In this table we report the results of the estimation of our leading regressions for crashes and jumps when these do take place in an

earning announcement month. As before, in the estimation we allow for fixed firm and year effects and use the Newey-West stan-

dard errors to control for autocorrelation and heteroscedasticity. The depended variables in the regressions are defined as follows:

ERCRASHi,t =

8
<
:

1, if rER
i,t − r̄ER

i,t ≤ −2σER
i,t ;

0, otherwise.
ERJUMPi,t =

8
<
:

1, if rER
i,t − r̄ER

i,t ≥ 2σER
i,t ;

0, otherwise.

MMCRASHi,t =

8
<
:

1, if rMM
i,t − r̄MM

i,t ≤ −2σMM
i,t ;

0, otherwise.
MMJUMPi,t =

8
<
:

1, if rMM
i,t − r̄MM

i,t ≥ 2σMM
i,t ;

0, otherwise.

where: rER
i,t ≡ ri,t − rm,t, rMM

i,t ≡ ri,t − (rf,t + βi,t(rm,t − rf,t)), ri,t is the raw return of stock i in month t, rm,t is the

monthly return of the CRSP equally weighted market portfolio, βi,t is the beta of the stock estimated over a sixty-month rolling

window and rf,t is the risk-free rate. r̄k
i,t and σk

i,t, k = ER, MM, ∅, denote the sample mean and standard deviation of the

corresponding k variable and are computed using a five-year rolling window. Regarding the independent variables: INSSALi,t−1

are the past month insiders’ sales in stock i, INSSALi,t−2,t−12 is the average of the insiders sales in stock i during the period

t − 12 to t − 2, INSPURCHi,t−1 are the past month insiders’ purchases in stock i, INSPURCHi,t−2,t−12 is the average

of the insiders purchases in stock i during the period t − 12 to t − 2, TTVi,t−1 is the past month total trading volume in

stock i, TTVi,t−2,t−12 is the average total trading volume in stock i during the period t − 12 to t − 2 and ERi,t−1,t−24 is

stock‘s i cumulative excess return over the CRSP equally weighted market portfolio for the previous two years. The sample

consists of insiders open market or private sales and purchases from 1986 to 2002 in common stocks traded in NYSE, AMEX and

Nasdaq markets that appear in CRSP dataset; the data on insider transactions comes from Thompson Financial Data Fillings

dataset. We exclude stocks with price smaller than $2 at the beginning of each calendar year, amended insider trading records,

transactions involving less than 100 shares, and fillings in which the reported transaction price was not within 20% of the CRSP

closing price on that day, or that involved more than the 20% of the number of shares outstanding.
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