44 research outputs found

    Dairy cattle breeding effectiveness analysis under the conditions of import substitution

    Full text link
    The relevance of the research problem is inspired by the strategic importance of dairy farming to the national economy, which is especially evident in the context of the EU economic sanctions against the Russian Federation and carrying out the import substitution policy. First and foremost, this policy applies to food commodities, including milk. The goal of the article is to study statistical productivity analysis of dairy cattle breeding as one of the major indicators to show its effectiveness (Privolzhsky Federal district in Russia is taken as the example). The main methods, used to study this problem are the index method, time series analysis, and correlation and regression analysis. As the study result there were identified the factors affecting the dairy cattle productivity, the prognosis and the conclusion about the positive aspects in solving problems of import substitution in the field of milk production. The article can be useful to regional governments in the development and adjustment programs for socio-economic development of subjects dealing with agriculture in the Volga Federal district of Russia. Β© 2016 Tokarev et al

    Research into influence of the electrolysis modes on the composition of galvanic Fe-Co-Mo coatings

    Get PDF
    ДослідТСно Π²ΠΏΠ»ΠΈΠ² Π΅Π½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π½ΠΈΡ… (густина струму Ρ–) Ρ– часових (Ρ‚Ρ€ΠΈΠ²Π°Π»Ρ–ΡΡ‚ΡŒ Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΡƒ tΡ– Ρ– ΠΏΠ°ΡƒΠ·ΠΈ tn, ΡΠΏΡ–Π²Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½Ρ tΡ–/tn) ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ»Ρ–Π·Ρƒ Π½Π° склад Ρ‚Π° ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³Ρ–ΡŽ ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π² Fe-Co-Mo. ВстановлСно, Ρ‰ΠΎ підвищСння тривалості Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΡƒ сприяє Π·Π±Π°Π³Π°Ρ‡Π΅Π½Π½ΡŽ сплаву ΠΌΠΎΠ»Ρ–Π±Π΄Π΅Π½ΠΎΠΌ Ρ‚ΠΈΠΌ Π±Ρ–Π»ΡŒΡˆΠ΅, Ρ‡ΠΈΠΌ Π²ΠΈΡ‰Π΅ густина струму. Показано, Ρ‰ΠΎ Π·Ρ– Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½ΡΠΌ густини струму структура ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π² Π·ΠΌΡ–Π½ΡŽΡ”Ρ‚ΡŒΡΡ Π²Ρ–Π΄ дрібнозСрнистої Π΄ΠΎ глобулярної

    ΠœΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΎ-Π°Π½Π°Ρ‚ΠΎΠΌΡ–Ρ‡Π½Π΅ вивчСння листя Rhododendron luteum sweet

    Get PDF
    Topicality. Rhododendrons are one of the most popular plants that are widely cultivated in most European countries as ornamental, essential oil, honey and insecticidal plants. Rhododendron luteum Sweet is a polymorphic species found in Ukraine as a wild-growing and ornamental plant. The chemical composition of yellow rhododendron is represented mainly by essential oils, flavonoids, hydroxycinnamic and organic acids, and triterpene and coumarin substances. Leaves are widely used in folk medicine as a diuretic, diaphoretic, astringent, wound healing, anti-inflammatory and analgesic. As a result of the study of the morphological and anatomical structure of the yellow rhododendron leaves, its structurally foliar characters under the conditions of this ecotype growth in Ukraine were studied according to a preliminary analysis of published data. Our studies were carried out with the aim of using macroscopic and microscopic traits of leaves of this species to standardize medicinal plant materials and develop quality control methods.Aim. To identify the leaves of Rhododendron luteum (L.) Sweet by macro and microscopic characteristics. Set the main diagnostic signs of leaves.Materials and methods. The objects of the study were samples of yellow rhododendron leaves collected during the mass flowering period. Microscopicstudies were performed on raw materials fixed in a mixture ofΒ  alcohol-glycerolwater (1 : 1 : 1). We used an OLYMPUS Lens FE-140 camera, an MBI-6 microscope, and a Biola-M microscope.Results and discussion. The main morphological and anatomical signs of yellow rhododendron leaves were determined. Macroscopic features include simple short-leaved leaves with a leathery, hollow leaf blade, with a solid edge, a pointed tip, a wedge-shaped base, cirrus venation; microscopic is dorsoventrally type of leaf blade structure. The cells of the upper epidermis are large, thin-walled, sinuous, without stomata, covered with a thick layer of cutin; cells of the lower epidermis are slightly tortuous; stomatal apparatus of the paracitic type, typical of the abaxial epiderm, covering and glandular trichomes are present. Ferruginous club-shaped emergenes on a multicellular stand, the cells of which accumulate a yellowish-brown secretion, the secreting head is oval-cylindrical, multicellular, with dark contents. Covering hairs is of three varieties: 1-2-cell, long, curled, spiky prevail, straight-walled hairs with an expanded base and long, straight-walled, thin-walled hairs are less common. The cut is round-triangular in cross section, the angular collenchyma is underlying the epidermis; in parenchymal cells, frequent crystals of calcium oxalate - druses and prismatic crystals.Conclusions. The results of macroscopic and microscopic study characteristics of yellow rhododendron leaves will be used to standardize medicinal plant materials and develop quality control methods.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. Π ΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄Ρ€ΠΎΠ½Ρ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ΄Π½ΠΈΠΌΠΈ ΠΈΠ· ΠΏΠΎΠΏΡƒΠ»ΡΡ€Π½Π΅ΠΉΡˆΠΈΡ… растСний, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π² Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ стран Π•Π²Ρ€ΠΎΠΏΡ‹ ΠΊΠ°ΠΊ Π΄Π΅ΠΊΠΎΡ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅, эфиромасличныС, мСдоносныС ΠΈ инсСктицидныС растСния. Rhododendron luteum Sweet – ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„Π½Ρ‹ΠΉ Π²ΠΈΠ΄, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ встрСчаСтся Π² Π£ΠΊΡ€Π°ΠΈΠ½Π΅ ΠΊΠ°ΠΊ дикорастущСС ΠΈ Π΄Π΅ΠΊΠΎΡ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ растСниС. Π₯имичСский состав Ρ€ΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄Ρ€ΠΎΠ½Π° ΠΆΠ΅Π»Ρ‚ΠΎΠ³ΠΎ прСдставлСн, прСимущСствСнно, эфирными маслами, Ρ„Π»Π°Π²ΠΎΠ½ΠΎΠΈΠ΄Π°ΠΌΠΈ, гидроксикоричными ΠΈ органичСскими кислотами, вСщСствами Ρ‚Ρ€ΠΈΡ‚Π΅Ρ€ΠΏΠ΅Π½ΠΎΠ²ΠΎΠΉ ΠΈ ΠΊΡƒΠΌΠ°Ρ€ΠΈΠ½ΠΎΠ²ΠΎΠΉ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹. Π›ΠΈΡΡ‚ΡŒΡ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Π² Π½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅ ΠΊΠ°ΠΊ ΠΌΠΎΡ‡Π΅Π³ΠΎΠ½Π½ΠΎΠ΅, ΠΏΠΎΡ‚ΠΎΠ³ΠΎΠ½Π½ΠΎΠ΅, вяТущСС, Ρ€Π°Π½ΠΎΠ·Π°ΠΆΠΈΠ²Π»ΡΡŽΡ‰Π΅Π΅, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΈ Π±ΠΎΠ»Π΅ΡƒΡ‚ΠΎΠ»ΡΡŽΡ‰Π΅Π΅ срСдство. ΠŸΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ исслСдования ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΎ-анатомичСского строСния Π»ΠΈΡΡ‚ΡŒΠ΅Π² Ρ€ΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄Ρ€ΠΎΠ½Π° ΠΆΠ΅Π»Ρ‚ΠΎΠ³ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ Π΅Π³ΠΎ структурно-Ρ„ΠΎΠ»ΠΈΠ°Ρ€Π½Ρ‹Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ Π² условиях произрастания этого экотипа Π² Π£ΠΊΡ€Π°ΠΈΠ½Π΅. Наши исслСдования ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ с Ρ†Π΅Π»ΡŒΡŽ использования макроскопичСских ΠΈ микроскопичСских ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Π»ΠΈΡΡ‚ΡŒΠ΅Π² этого Π²ΠΈΠ΄Π° для стандартизации лСкарствСнного Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡΡ‹Ρ€ΡŒΡ ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ контроля качСства.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹. ΠŸΡ€ΠΎΠ²Π΅ΡΡ‚ΠΈ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ Π»ΠΈΡΡ‚ΡŒΠ΅Π² Rhododendron luteum (L.) Sweet ΠΏΠΎ ΠΌΠ°ΠΊΡ€ΠΎ- ΠΈ микроскопичСским ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ. Π£ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ основныС диагностичСскиС ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ Π»ΠΈΡΡ‚ΡŒΠ΅Π².ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠžΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ исслСдования Π±Ρ‹Π»ΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ Π»ΠΈΡΡ‚ΡŒΠ΅Π² Ρ€ΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄Ρ€ΠΎΠ½Π° ΠΆΠ΅Π»Ρ‚ΠΎΠ³ΠΎ, собранных Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ массового цвСтСния. ΠœΠΈΠΊΡ€ΠΎΡΠΊΠΎΠΏΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ исслСдования ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° ΡΡ‹Ρ€ΡŒΠ΅, фиксированном Π² смСси спирт-Π³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ½-Π²ΠΎΠ΄Π° (1 : 1 : 1). Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ использовали Ρ„ΠΎΡ‚ΠΎΠ°ΠΏΠΏΠ°Ρ€Π°Ρ‚ OLYMPUS Lens FE-140, микроскоп ΠœΠ‘Π˜-6, микроскоп Π‘ΠΈΠΎΠ»Π°-М.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΈΡ… обсуТдСниС. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ основныС ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΎ-анатомичСскиС ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ Π»ΠΈΡΡ‚ΡŒΠ΅Π² Ρ€ΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄Ρ€ΠΎΠ½Π° ΠΆΠ΅Π»Ρ‚ΠΎΠ³ΠΎ. К макроскопичСским ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ отнСсСны простыС ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΡ‡Π΅Ρ€Π΅ΡˆΠΊΠΎΠ²Ρ‹Π΅ Π»ΠΈΡΡ‚ΡŒΡ с коТистой, цСлостной листовой пластинкой с Ρ†Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΊΡ€Π°Π΅ΠΌ, заострСнной Π²Π΅Ρ€Ρ…ΡƒΡˆΠΊΠΎΠΉ, ΠΊΠ»ΠΈΠ½ΠΎΠ²ΠΈΠ΄Π½ΠΎΠΉ основой, пСристым ΠΆΠΈΠ»ΠΊΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ; ΠΊ микроскопичСским – Π΄ΠΎΡ€Π·ΠΎΠ²Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Ρ‚ΠΈΠΏ строСния листовой пластинки. ΠšΠ»Π΅Ρ‚ΠΊΠΈ Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ эпидСрмы ΠΊΡ€ΡƒΠΏΠ½Ρ‹Π΅, тонкостСнныС, извилистостСнныС, Π±Π΅Π· ΡƒΡΡ‚ΡŒΠΈΡ†, ΠΏΠΎΠΊΡ€Ρ‹Ρ‚Ρ‹Π΅ толстым слоСм ΠΊΡƒΡ‚ΠΈΠ½Π°; ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π½ΠΈΠΆΠ½Π΅ΠΉ эпидСрмы слабо извилистостСнныС; ΡƒΡΡ‚ΡŒΠΈΡ‡Π½Ρ‹ΠΉ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ ΠΏΠ°Ρ€Π°Ρ†ΠΈΡ‚Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°, Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹ΠΉ для абаксиальной эпидСрмы, ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΊΡ€ΠΎΡŽΡ‰ΠΈΠ΅ ΠΈ ТСлСзистыС Ρ‚Ρ€ΠΈΡ…ΠΎΠΌΡ‹. ЖСлСзистыС Π±ΡƒΠ»Π°Π²ΠΎΠ²ΠΈΠ΄Π½Ρ‹Π΅ эмСргСнцы Π½Π° ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ подставкС, ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ ΠΆΠ΅Π»Ρ‚ΠΎΠ²Π°Ρ‚ΠΎ-ΠΊΠΎΡ€ΠΈΡ‡Π½Π΅Π²Ρ‹ΠΉ сСкрСт, ΡΠ΅ΠΊΡ€Π΅Ρ‚ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ Π³ΠΎΠ»ΠΎΠ²ΠΊΠ° овально-цилиндричСская, многоклСточная с Ρ‚Π΅ΠΌΠ½Ρ‹ΠΌ содСрТимым. ΠšΡ€ΠΎΡŽΡ‰ΠΈΠ΅ волоски Ρ‚Ρ€Π΅Ρ… разновидностСй: ΠΏΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ 1-2-ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅, Π΄Π»ΠΈΠ½Π½Ρ‹Π΅, Π·Π°Π³Π½ΡƒΡ‚Ρ‹Π΅, остроконСчныС, Ρ€Π΅ΠΆΠ΅ Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ прямостСнныС волоски с Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½Π½ΠΎΠΉ основой ΠΈ Π΄Π»ΠΈΠ½Π½Ρ‹Π΅, прямостСнныС ΠΈ тонкостСнныС. Π§Π΅Ρ€Π΅Π½ΠΎΠΊ ΠΎΠΊΡ€ΡƒΠ³Π»ΠΎ-Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Π½Π° ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠΌ Ρ€Π°Π·Ρ€Π΅Π·Π΅, эпидСрму подстилаСт угловая ΠΊΠΎΠ»Π»Π΅Π½Ρ…ΠΈΠΌΠ°; Π² ΠΏΠ°Ρ€Π΅Π½Ρ…ΠΈΠΌΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… частыС кристаллы оксалата ΠΊΠ°Π»ΡŒΡ†ΠΈΡ – Π΄Ρ€ΡƒΠ·Ρ‹ ΠΈ призматичСскиС кристаллы.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ изучСния макроскопичСских ΠΈ микроскопичСских ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Π»ΠΈΡΡ‚ΡŒΠ΅Π² Ρ€ΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄Ρ€ΠΎΠ½Π° ΠΆΠ΅Π»Ρ‚ΠΎΠ³ΠΎ Π±ΡƒΠ΄ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для стандартизации лСкарствСнного Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡΡ‹Ρ€ΡŒΡ ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ контроля качСства.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ–ΡΡ‚ΡŒ. Π ΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄Ρ€ΠΎΠ½ΠΈ Ρ” ΠΎΠ΄Π½ΠΈΠΌΠΈ Π· Π½Π°ΠΉΠΏΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ–ΡˆΠΈΡ… рослин, Ρ‰ΠΎ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΡƒΡŽΡ‚ΡŒΡΡ Ρƒ Π±Ρ–Π»ΡŒΡˆΠΎΡΡ‚Ρ– ΠΊΡ€Π°Ρ—Π½ Π„Π²Ρ€ΠΎΠΏΠΈ як Π΄Π΅ΠΊΠΎΡ€Π°Ρ‚ΠΈΠ²Π½Ρ–, Π΅Ρ„Ρ–Ρ€ΠΎΠΎΠ»Ρ–ΠΉΠ½Ρ–, мСдоносні Ρ‚Π° інсСктицидні рослини. Rhododendron luteum Sweet – ΠΏΠΎΠ»Ρ–ΠΌΠΎΡ€Ρ„Π½ΠΈΠΉ Π²ΠΈΠ΄, який Π·ΡƒΡΡ‚Ρ€Ρ–Ρ‡Π°Ρ”Ρ‚ΡŒΡΡ Π² Π£ΠΊΡ€Π°Ρ—Π½Ρ– як дикоросла Ρ‚Π° Π΄Π΅ΠΊΠΎΡ€Π°Ρ‚ΠΈΠ²Π½Π° рослина. Π₯Ρ–ΠΌΡ–Ρ‡Π½ΠΈΠΉ склад Ρ€ΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄Ρ€ΠΎΠ½Ρƒ ΠΆΠΎΠ²Ρ‚ΠΎΠ³ΠΎ прСдставлСний ΠΏΠ΅Ρ€Π΅Π²Π°ΠΆΠ½ΠΎ Π΅Ρ„Ρ–Ρ€Π½ΠΈΠΌΠΈ оліями, Ρ„Π»Π°Π²ΠΎΠ½ΠΎΡ—Π΄Π°ΠΌΠΈ, гідроксикоричними Ρ‚Π° ΠΎΡ€Π³Π°Π½Ρ–Ρ‡Π½ΠΈΠΌΠΈ кислотами, Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½Π°ΠΌΠΈ Ρ‚Ρ€ΠΈΡ‚Π΅Ρ€ΠΏΠ΅Π½ΠΎΠ²ΠΎΡ— Ρ‚Π° ΠΊΡƒΠΌΠ°Ρ€ΠΈΠ½ΠΎΠ²ΠΎΡ— ΠΏΡ€ΠΈΡ€ΠΎΠ΄ΠΈ. Листки ΡˆΠΈΡ€ΠΎΠΊΠΎ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‚ΡŒ Ρƒ Π½Π°Ρ€ΠΎΠ΄Π½Ρ–ΠΉ ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Ρ– як сСчогінний, ΠΏΠΎΡ‚ΠΎΠ³Ρ–Π½Π½ΠΈΠΉ, Π²`яТучий, Ρ€Π°Π½ΠΎΠ·Π°Π³ΠΎΡŽΠ²Π°Π»ΡŒΠ½ΠΈΠΉ, ΠΏΡ€ΠΎΡ‚ΠΈΠ·Π°ΠΏΠ°Π»ΡŒΠ½ΠΈΠΉ Ρ‚Π° Π±ΠΎΠ»Π΅Ρ‚Π°ΠΌΡƒΠ²Π°Π»ΡŒΠ½ΠΈΠΉ засіб. ΠŸΠΎΠΏΠ΅Ρ€Π΅Π΄Π½Ρ–ΠΉ Π°Π½Π°Π»Ρ–Π· Π»Ρ–Ρ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΈΡ… Π΄Π°Π½ΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π°Π², Ρ‰ΠΎ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ– вивчСння ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΎ-Π°Π½Π°Ρ‚ΠΎΠΌΡ–Ρ‡Π½ΠΎΡ— Π±ΡƒΠ΄ΠΎΠ²ΠΈ листків Ρ€ΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄Ρ€ΠΎΠ½Ρƒ ΠΆΠΎΠ²Ρ‚ΠΎΠ³ΠΎ виявлСні ΠΉΠΎΠ³ΠΎ структурно-Ρ„ΠΎΠ»Ρ–Π°Ρ€Π½Ρ– ΠΎΠ·Π½Π°ΠΊΠΈ Ρ‰ΠΎΠ΄ΠΎ ΡƒΠΌΠΎΠ² зростання Ρ†ΡŒΠΎΠ³ΠΎ Π΅ΠΊΠΎΡ‚ΠΈΠΏΡƒ Π² Π£ΠΊΡ€Π°Ρ—Π½Ρ–. ΠΠ°ΡˆΡ– дослідТСння проводилися Π· ΠΌΠ΅Ρ‚ΠΎΡŽ використання макроскопічних Ρ‚Π° мікроскопічних ΠΎΠ·Π½Π°ΠΊ листків Ρ†ΡŒΠΎΠ³ΠΎ Π²ΠΈΠ΄Ρƒ для стандартизації Π»Ρ–ΠΊΠ°Ρ€ΡΡŒΠΊΠΎΡ— рослинної сировини Ρ‚Π° Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽ якості.ΠœΠ΅Ρ‚Π° Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ. ΠŸΡ€ΠΎΠ²Π΅ΡΡ‚ΠΈ Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–ΡŽ листків Rhododendron luteum (L.) Sweet Π·Π° ΠΌΠ°ΠΊΡ€ΠΎ- Ρ‚Π° мікроскопічними ΠΎΠ·Π½Π°ΠΊΠ°ΠΌΠΈ. Встановити основні діагностичні ΠΎΠ·Π½Π°ΠΊΠΈ листя.ΠœΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ Ρ‚Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ. ΠžΠ±β€™Ρ”ΠΊΡ‚Π°ΠΌΠΈ дослідТСння Π±ΡƒΠ»ΠΈ Π·Ρ€Π°Π·ΠΊΠΈ листків Ρ€ΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄Ρ€ΠΎΠ½Ρƒ ΠΆΠΎΠ²Ρ‚ΠΎΠ³ΠΎ, Π·Ρ–Π±Ρ€Π°Π½ΠΈΡ… Ρƒ ΠΏΠ΅Ρ€Ρ–ΠΎΠ΄ масового цвітіння. ΠœΡ–ΠΊΡ€ΠΎΡΠΊΠΎΠΏΡ–Ρ‡Π½Ρ– дослідТСння ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° сировині, фіксованій Ρƒ ΡΡƒΠΌΡ–ΡˆΡ– спирт-Π³Π»Ρ–Ρ†Π΅Ρ€ΠΈΠ½-Π²ΠΎΠ΄Π° (1 : 1 : 1). Π£ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– використовували Ρ„ΠΎΡ‚ΠΎΠ°ΠΏΠ°Ρ€Π°Ρ‚ OLYMPUS Lens FE-140, мікроскоп ΠœΠ‘Π˜-6, мікроскоп Π‘Π†ΠžΠ›ΠΠœ-М.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ‚Π° Ρ—Ρ… обговорСння. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½Ρ– основні ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΎ-Π°Π½Π°Ρ‚ΠΎΠΌΡ–Ρ‡Π½Ρ– ΠΎΠ·Π½Π°ΠΊΠΈ листків Ρ€ΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄Ρ€ΠΎΠ½Ρƒ ΠΆΠΎΠ²Ρ‚ΠΎΠ³ΠΎ. Π”ΠΎ макроскопічних ΠΎΠ·Π½Π°ΠΊ віднСсСно – прості ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΡ‡Π΅Ρ€Π΅ΡˆΠΊΠΎΠ²Ρ– листки Π· ΡˆΠΊΡ–Ρ€ΡΡΡ‚ΠΎΡŽ, Ρ†Ρ–Π»Ρ–ΡΠ½ΠΎΡŽ Π»ΠΈΡΡ‚ΠΊΠΎΠ²ΠΎΡŽ ΠΏΠ»Π°ΡΡ‚ΠΈΠ½ΠΊΠΎΡŽ Π· цілісним ΠΊΡ€Π°Ρ”ΠΌ, Π·Π°Π³ΠΎΡΡ‚Ρ€Π΅Π½ΠΎΡŽ Π²Π΅Ρ€Ρ…Ρ–Π²ΠΊΠΎΡŽ, ΠΊΠ»ΠΈΠ½ΠΎΠΏΠΎΠ΄Ρ–Π±Π½ΠΎΡŽ основою, пСристим Тилкуванням; Π΄ΠΎ мікроскопічних – Π΄ΠΎΡ€Π·ΠΎΠ²Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΈΠΉ Ρ‚ΠΈΠΏ Π±ΡƒΠ΄ΠΎΠ²ΠΈ листкової пластинки; ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ Π²Π΅Ρ€Ρ…Π½ΡŒΠΎΡ— Π΅ΠΏΡ–Π΄Π΅Ρ€ΠΌΠΈ Π²Π΅Π»ΠΈΠΊΠΎΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π½Ρ–, тонкостінні, звивистостінні Π±Π΅Π· ΠΏΡ€ΠΎΠ΄ΠΈΡ…Ρ–Π², Π²ΠΊΡ€ΠΈΡ‚Ρ– товстим ΡˆΠ°Ρ€ΠΎΠΌ ΠΊΡƒΡ‚ΠΈΠ½Ρƒ; ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ Π½ΠΈΠΆΠ½ΡŒΠΎΡ— Π΅ΠΏΡ–Π΄Π΅Ρ€ΠΌΠΈ слабко звивистостінні; ΠΏΡ€ΠΎΠ΄ΠΈΡ…ΠΎΠ²ΠΈΠΉ Π°ΠΏΠ°Ρ€Π°Ρ‚ ΠΏΠ°Ρ€Π°Ρ†ΠΈΡ‚Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΡƒ, Ρ‚ΠΈΠΏΠΎΠ²ΠΈΠΉ для Π°Π±Π°ΠΊΡΡ–Π°Π»ΡŒΠ½ΠΎΡ— Π΅ΠΏΡ–Π΄Π΅Ρ€ΠΌΠΈ, наявні ΠΊΡ€ΠΈΡŽΡ‡Ρ– Ρ‚Π° залозисті Ρ‚Ρ€ΠΈΡ…ΠΎΠΌΠΈ. Залозисті Π±ΡƒΠ»Π°Π²ΠΎΠΏΠΎΠ΄Ρ–Π±Π½Ρ– Π΅ΠΌΠ΅Ρ€Π³Π΅Π½Ρ†Ρ– Π½Π° Π±Π°Π³Π°Ρ‚ΠΎΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π½Ρ–ΠΉ підставці, ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ якої Π½Π°ΠΊΠΎΠΏΠΈΡ‡ΡƒΡŽΡ‚ΡŒ ΠΆΠΎΠ²Ρ‚ΡƒΠ²Π°Ρ‚ΠΎ-Π±Ρ€ΡƒΠ½Π°Ρ‚Π½ΠΈΠΉ сСкрСт, ΡΠ΅ΠΊΡ€Π΅Ρ‚ΡƒΡŽΡ‡Π° Π³ΠΎΠ»ΠΎΠ²ΠΊΠ° овально-Ρ†ΠΈΠ»Ρ–Π½Π΄Ρ€ΠΈΡ‡Π½Π°, Π±Π°Π³Π°Ρ‚ΠΎΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π½Π° Π· Ρ‚Π΅ΠΌΠ½ΠΈΠΌ вмістом. ΠšΡ€ΠΈΡŽΡ‡Ρ– волоски Ρ‚Ρ€ΡŒΠΎΡ… Ρ€Ρ–Π·Π½ΠΎΠ²ΠΈΠ΄Ρ–Π²: ΠΏΠ΅Ρ€Π΅Π²Π°ΠΆΠ°ΡŽΡ‚ΡŒ 1-2-ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π½Ρ–, Π΄ΠΎΠ²Π³Ρ–, Π·Π°Π³Π½ΡƒΡ‚Ρ–, гострокінцСві, Ρ€Ρ–Π΄ΡˆΠ΅ Π·ΡƒΡΡ‚Ρ€Ρ–Ρ‡Π°ΡŽΡ‚ΡŒΡΡ прямостінні волоски Π· Ρ€ΠΎΠ·ΡˆΠΈΡ€Π΅Π½ΠΎΡŽ основою Ρ‚Π° Π΄ΠΎΠ²Π³Ρ–, прямостінні Ρ– тонкостінні. Π§Π΅Ρ€Π΅ΡˆΠΎΠΊ ΠΎΠΊΡ€ΡƒΠ³Π»ΠΎ-Ρ‚Ρ€ΠΈΠΊΡƒΡ‚Π½ΠΈΠΉ Π½Π° ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠΌΡƒ Ρ€ΠΎΠ·Ρ€Ρ–Π·Ρ–, Π΅ΠΏΡ–Π΄Π΅Ρ€ΠΌΡƒ підстСляє ΠΊΡƒΡ‚ΠΎΠ²Π° ΠΊΠΎΠ»Π΅Π½Ρ…Ρ–ΠΌΠ°; Π² ΠΏΠ°Ρ€Π΅Π½Ρ…Ρ–ΠΌΠ½ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π°Ρ… часті кристали оксалату ΠΊΠ°Π»ΡŒΡ†Ρ–ΡŽ – Π΄Ρ€ΡƒΠ·ΠΈ Ρ‚Π° ΠΏΡ€ΠΈΠ·ΠΌΠ°Ρ‚ΠΈΡ‡Π½Ρ– кристали.Висновки. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ вивчСння макроскопічних Ρ‚Π° мікроскопічних ΠΎΠ·Π½Π°ΠΊ листків Ρ€ΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄Ρ€ΠΎΠ½Ρƒ ΠΆΠΎΠ²Ρ‚ΠΎΠ³ΠΎ Π±ΡƒΠ΄ΡƒΡ‚ΡŒ використані для стандартизації Π»Ρ–ΠΊΠ°Ρ€ΡΡŒΠΊΠΎΡ— рослинної сировини Ρ‚Π° Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽ якості

    Functional ternary Fe-Co-Mo(W) coatings

    Get PDF
    The researchers and technologists increased interest to multicomponent galvanic alloys of iron triad metals with refractory elements (W, Mo etc.) [1, 2] is caused by several reasons. The main is creation new technology of coatings with a unique set of functional properties such as wear and corrosion resistance, increased catalytic activity and microhardness, magnetic properties, and others [3, 4]. This allows replacing toxic chromium-plating, to create effective catalytic materials, more available compared to traditional platinum based systems [5] and to obtain new soft magnetic films for the production of magnetic head elements for recording and reproducing information [6]. In this connection, the electrochemical methods of deposition are considered to be a competitive alternative to the physical methods of production [7] due to the possibility of flexible process control and monitoring. This enables the formation of coatings of a varying composition and structure, which is a key factor for production of the materials with specified functional properties. Many scientific papers delve into the electrodeposition of binary [8, 9] and ternary [10] iron and cobalt alloys with refractory components. In [11], Fe-W and Fe-W-P coatings with high wear resistance and corrosion resistance were obtained from electrolytes of different composition. It is noted that friction coefficient of amorphous ternary Fe-W-P alloys is lower than that of binary Fe-W coatings. The authors of [12] emphasize the increased wear resistance of Fe-W, Ni-W and Co-W coatings obtained from citrate and citrate-ammonia electrolytes at low bulk current densities. The molybdenum incorporation into cobalt deposits leads to a significant decrease in the coercive force and an increase in the saturation magnetization of the materials [13]. It is shown [14] that the molybdenum content in the alloy increases as the potential shifts toward negative values. The structure of deposits varies from close-packed hexagonal to mixed crystalline and amorphous with increasing current density. depends on coatings thickness: thin films have an amorphous structure. The great practical interest for works [15, 16] are due to electrosynthesis of ternary Fe-Mo-W alloys with increased physic-mechanical and corrosion protective properties for hardening machine parts. Obviously, in each individual case the formation of the coating depends on the qualitative and quantitative composition of the electrolyte and on the synthesis conditions. It should be noted the modes and parameters of the electrolysis predetermine in a particular way the concentration ratio of the alloy components and phase composition of the coatings [17]. Accordingly, the functional properties of coatings depended on the composition and structure can be controlled by deposition conditions. It should be noted that most published results covers to binary alloys Fe (Ni, Co) -Mo (W). Thereby it is relevant to study the process of electrosynthesis of ternary alloys and to analyze their properties

    Filling a financial gap in SDG3 achievement: Investments vs. budget funds

    Get PDF
    Π£ Ρ†ΡŒΠΎΠΌΡƒ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Ρ– Ρ€ΠΎΠ·Π³Π»ΡΠ΄Π°Ρ”Ρ‚ΡŒΡΡ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° фінансування Π¦Ρ–Π»Ρ– 3 сталого Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ Β«Π—Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΠΈΡ‚ΠΈ Π·Π΄ΠΎΡ€ΠΎΠ²Π΅ Тиття Ρ‚Π° сприяти Π΄ΠΎΠ±Ρ€ΠΎΠ±ΡƒΡ‚Ρƒ для всіх Ρƒ Π±ΡƒΠ΄ΡŒ-якому Π²Ρ–Ρ†Ρ–Β» (Π¦Π‘Π  3). ΠΠ΅Π·Π²Π°ΠΆΠ°ΡŽΡ‡ΠΈ Π½Π° ΠΉΠΎΠ³ΠΎ Π°ΠΌΠ±Ρ–Ρ‚Π½ΠΎΠ³ΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Ρƒ, досягнСнню Ρ†Ρ–Ρ”Ρ— ΠΌΠ΅Ρ‚ΠΈ Π·Π°Π²Π°ΠΆΠ°Π² суттєвий Π½Π΅Π΄ΠΎΠ»Ρ–ΠΊ фінансування. ДослідТСння ΠΌΠ°Ρ” Π½Π° ΠΌΠ΅Ρ‚Ρ– Π²ΠΈΠ²Ρ‡ΠΈΡ‚ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–ΠΉΠ½Ρ– Π΄ΠΆΠ΅Ρ€Π΅Π»Π° подолання інвСстицій ΠΏΡ€ΠΎΠ³Π°Π»ΠΈΠ½Π° Π² Π¦Π‘Π  3, Π°Π½Π°Π»Ρ–Π·ΡƒΡŽΡ‡ΠΈ Π΄Π°Π½Ρ– Π· 28 Ρ”Π²Ρ€ΠΎΠΏΠ΅ΠΉΡΡŒΠΊΠΈΡ… ΠΊΡ€Π°Ρ—Π½. Π¦Π΅ Π²ΠΊΠ»ΡŽΡ‡Π°Ρ” Ρ‚Π°ΠΊΡ– Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΈ як індСкс Ρ– прогрСс Ρƒ сталому Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ, Π΄ΠΆΠ΅Ρ€Π΅Π»Π° інвСстиційних рСсурсів, Ρ– Π²ΠΈΡ‚Ρ€Π°Ρ‚ΠΈ Π½Π° ΠΎΡ…ΠΎΡ€ΠΎΠ½Ρƒ здоров’я Π½Π° 2020 Ρ€Ρ–ΠΊ. Для Ρ†ΡŒΠΎΠ³ΠΎ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‚ΡŒΡΡ рСгрСсійні ΠΌΠΎΠ΄Π΅Π»Ρ– Logit Ρ– Probit Π°Π½Π°Π»Ρ–Π·. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ ΡΠ²Ρ–Π΄Ρ‡Π°Ρ‚ΡŒ ΠΏΡ€ΠΎ Π²Ρ–Π΄ΡΡƒΡ‚Π½Ρ–ΡΡ‚ΡŒ статистично Π·Π½Π°Ρ‡ΡƒΡ‰ΠΎΠ³ΠΎ зв’язку ΠΌΡ–ΠΆ обсягом інвСстицій Π²Ρ–Π΄ Π΄Π΅Ρ€ΠΆΠ°Π²ΠΈ, бізнСсу Ρ‚Π° домогосподарств ΠΊΡ€Π°Ρ—Π½ΠΈ спроби Ρ‚Π° Ρ—Ρ…Π½Ρ–ΠΉ Ρ€Ρ–Π²Π΅Π½ΡŒ досягнСння Π¦Π‘Π  3. Однак Π²ΠΈΡΠ²Π»ΡΡ”Ρ‚ΡŒΡΡ Ρ†Ρ–ΠΊΠ°Π²Π° Π·Π½Π°Ρ…Ρ–Π΄ΠΊΠ° Ρ‰ΠΎΠ΄ΠΎ Π²ΠΈΠ΄Π°Ρ‚ΠΊΡ–Π² Π½Π° ΠΎΡ…ΠΎΡ€ΠΎΠ½Ρƒ Π·Π΄ΠΎΡ€ΠΎΠ²'я Π·Π° ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ°ΠΌΠΈ Π΄Π΅Ρ€ΠΆΠ°Π²Π½ΠΎΠ³ΠΎ страхування сСрСд Ρ”Π²Ρ€ΠΎΠΏΠ΅ΠΉΡΡŒΠΊΠΈΡ… ΠΊΡ€Π°Ρ—Π½ΠΈ, які Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΡƒΡŽΡ‚ΡŒ Π±Ρ–Π»ΡŒΡˆΠΈΠΉ прогрСс Ρƒ досягнСнні Π¦Π‘Π  порівняно Π· ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΈ Π΄ΠΎΠ±Ρ€ΠΎΠ²Ρ–Π»ΡŒΠ½ΠΎΠ³ΠΎ страхування. Π£ статті Π½Π°Π³ΠΎΠ»ΠΎΡˆΡƒΡ”Ρ‚ΡŒΡΡ Π½Π° ваТливості збалансованості ΠΏΡ–Π΄Ρ…Ρ–Π΄, який використовує ΠΊΡ–Π»ΡŒΠΊΠ° Π΄ΠΆΠ΅Ρ€Π΅Π» фінансування Ρ‚Π° ΠΏΠΎΡ‚Ρ€Π΅Π±ΡƒΡ” цілСспрямованої ΠΏΠΎΠ»Ρ–Ρ‚ΠΈΠΊΠΈ Ρ‚Π° партнСрства для ΠΌΠΎΠ±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–Ρ— рСсурсів для забСзпСчСння Π·Π΄ΠΎΡ€ΠΎΠ²ΠΎΠ³ΠΎ Тиття Ρ‚Π° сприяння Π΄ΠΎΠ±Ρ€ΠΎΠ±ΡƒΡ‚Ρƒ для всі Π² Π±ΡƒΠ΄ΡŒ-якому Π²Ρ–Ρ†Ρ–.This paper delves into the challenge of financing Sustainable Development Goal 3 β€œEnsure healthy lives and promote well-being for all at all ages” (SDG 3). Despite its ambitious nature, the achievement of this goal has been hindered by a substantial lack of funding. The study aims to investigate potential sources to bridge the investment gap in SDG 3, analyzing data from 28 European countries. This includes factors such as the index and progress in sustainable development, sources of investment resources, and healthcare costs for 2020. Logit and probit regression models are employed for the analysis. The results indicate the absence of a statistically significant relationship between the volume of investments from the state, businesses, and households of coun- tries and their level of SDG 3 achievement. However, an interesting finding emerges regarding healthcare expenditures under state insurance programs among European countries, which show a greater extent of progress in achieving SDGs compared to voluntary insurance programs. The paper emphasizes the importance of a balanced approach that uses multiple funding sources and the need for focused policies and partnerships to mobilize resources to ensure healthy lives and promote well-being for all at all ages.This paper delves into the challenge of financing Sustainable Development Goal 3 β€œEnsure healthy lives and promote well-being for all at all ages” (SDG 3). Despite its ambitious nature, the achievement of this goal has been hindered by a substantial lack of funding. The study aims to investigate potential sources to bridge the investment gap in SDG 3, analyzing data from 28 European countries. This includes factors such as the index and progress in sustainable development, sources of investment resources, and healthcare costs for 2020. Logit and probit regression models are employed for the analysis. The results indicate the absence of a statistically significant relationship between the volume of investments from the state, businesses, and households of coun- tries and their level of SDG 3 achievement. However, an interesting finding emerges regarding healthcare expenditures under state insurance programs among European countries, which show a greater extent of progress in achieving SDGs compared to voluntary insurance programs. The paper emphasizes the importance of a balanced approach that uses multiple funding sources and the need for focused policies and partnerships to mobilize resources to ensure healthy lives and promote well-being for all at all ages

    Evaluation of a strategy for tumor-initiating stem cell eradication in primary human glioblastoma cultures as a model

    Get PDF
    Primary cultures of human glioblastoma were obtained from the surgical material of patients K. (female, 61 years, Ds: relapse of glioblastoma) and Zh. (female, 60 years, Ds: relapse of glioblastoma). The effectiveness of a new therapeutic approach aimed at destroying the cancer cell community was evaluated on the primary cell lines of human glioblastoma culture by employing a new strategy of tumor-initiating stem cell synchronization and a domestic strategy of their eradication "3+1". The key elements of the strategy were the following indicator results: (1) evaluation of the presence of tumor-initiating stem cells in a population of cells from analyzed cultures by their ability to internalize double-stranded labeled DNA (TAMRA+ cells); (2) determination of the reference time points of the repair cycle of DNA interstrand cross-links induced by cross-linking cytostatic mitomycin C; (3) evaluation of cell cycle synchronization; (4) determination of the time (day after therapy initiation) when TAMRA+ cells were synchronously present in phase G1/S of the cell cycle, sensitive to the therapy; and (5) establishment of the TAMRA+ (tumor-initiating stem cells) eradication schedule. The cultures were treated with cross-linking cytostatic mitomycin C and a compositional DNA preparation. After the treatments, cell division slows down, and the cultures degrade. The K cell line completely degraded within 30 days of observation. The cell number of the Zh culture fell to nearly one-third of the starting value by day 15 of observation. On day 15, this indicator constituted 1/7.45 for mitomycin C and 1/10.28 for mitomycin C + DNA with reference to the control. The main target of the mitomycin C + DNA regimen was TAMRA+ tumor-initiating stem cells of the glioblastoma cell populations. The action of mitomycin C alone or in the combination with DNA demonstrated effective elimination of TAMRA+ tumor-initiating stem cells and the whole primary cultures of human glioblastomas

    Phosphate-modified CpG oligonucleotides induce in vitro maturation of human myeloid dendritic cells

    Get PDF
    Myeloid dendritic cells (DCs) play an important role in the immune response; therefore, the search for compounds that can effectively activate DCs is a needful goal. This study was aimed to investigate the effect of synthetic CpG oligodeoxynucleotides (CpG-ODN) on the maturation and allostimulatory activity of myeloid DCs in comparison with other PAMP and DAMP molecules. For the research, we synthesized known CpG-ODN class C (SD-101 and D-SL03) containing thiophosphate internucleotide groups, and their original phosphate-modified analogues (SD-101M and D-SL03M) with mesylphosphoramide internucleotide groups (M = ΞΌ-modification). The effects of CpG-ODN and other activators were evaluated on DCs generated from blood monocytes in the presence of GM-CSF and IFN-Ξ± (IFN-DC) or IL-4 (IL4-DC). Evaluation of the intracellular TLR-9 expression showed that both types of DCs (IFN-DC and IL4-DC) contained on average 52 and 80 % of TLR-9-positive cells, respectively. The CpG-ODNs studied enhanced the allostimulatory activity of IFN-DCs, and the effect of ΞΌ-modified CpG-ODNs was higher than that of CpG-ODNs with thiophosphate groups. The stimulating effect of CpG-ODN at a dose of 1.0 ΞΌg/ml was comparable (for D-SL03, D-SL03M, SD-101) with or exceeded (for SD-101M) the effect of LPS at a dose of 10 ΞΌg/ml. At the same time, IFN-DCs were characterized by greater sensitivity to the action of CpG-ODNs than IL4-DCs. The enhancement of DC allostimulatory activity in the presence of CpG-ODNs was associated with the induction of final DC maturation, which was confirmed by a significant decrease in the number of CD14+DC, an increase in mature CD83+DC and a trend towards an increase in CD86+DC. Interestingly, the characteristic ability of LPS to enhance the expression of the co-stimulatory molecule OX40L on DCs was revealed only for the ΞΌ-analogue SD-101M. In addition, CpG-ODNs (SD-101 and SD-101M) had a stimulatory effect on IFN-Ξ³ production comparable to the action of LPS. The data obtained indicate a stimulating effect of CpG-ODN on the maturation and allostimulatory activity of human myeloid DCs, which is more pronounced for ΞΌ-modified analogs

    ЀармакодинамичСская Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π½ΠΎΠ²ΠΎΠ³ΠΎ соСдинСния XC221GI Π² in vitro ΠΈ in vivo модСлях вирусного воспалСния рСспираторного Ρ‚Ρ€Π°ΠΊΡ‚Π°

    Get PDF
    The viruses most commonly affecting the human respiratory tract include rhinoviruses, respiratory syncytial virus (RSV), influenza viruses, and coronaviruses (CoVs). The virus infection of the epithelial cells of the respiratory tract triggers an inflammation accompanied by the release of pro-inflammatory cytokines and chemokines including IL6, IL8(CXCL8), IL1Ξ², and tumor necrosis factor Ξ± (TNFΞ±). A subsequent acute inflammatory response in the lungs is accompanied by an increase in the production of cytokines and chemokines βˆ’ CXCR3 receptor ligands – that are key players of acute inflammatory response that induce an influx of neutrophils and T cells into the lungs.We studied the pharmacodynamic activity of the new compound XC221GI to suppress the IL6 and IL8 of an experimental RSV infection in vitro in human lung carcinoma cells A549 and in vivo in the lungs of cotton rats. We also studied the effect of XC221GI on the production of the chemokines CXCL10, CXCL9, and CXCL11 in mouse bronchoalveolar lavage as well as on the influx of neutrophils into the mouse lungs after the intranasal administration of interferon Ξ³ (IFNΞ³).The obtained results demonstrate the anti-inflammatory activity of XC221GI, which suppresses the production of excessive levels of the key inflammatory markers IL6, IL8, CXCL10, CXCL9, and CXCL11 as well as the influx of neutrophils into the lungs thereby reducing lung pathology. These data confirm the effectiveness of XC221GI as a means of preventive anti-inflammatory therapy during a viral infection of the respiratory tract.Вирусы, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ часто ΠΏΠΎΡ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠ΅ рСспираторный Ρ‚Ρ€Π°ΠΊΡ‚ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ риновирусы, рСспираторно-ΡΠΈΠ½Ρ†ΠΈΡ‚ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ вирус (Π Π‘Π’), вирусы Π³Ρ€ΠΈΠΏΠΏΠ° ΠΈ коронавирусы (CoV). Π˜Π½Ρ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ вирусом ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ рСспираторного Ρ‚Ρ€Π°ΠΊΡ‚Π° запускаСт Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ процСсс, ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‰ΠΈΠΉΡΡ выбросом ΠΏΡ€ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ² ΠΈ Ρ…Π΅ΠΌΠΎΠΊΠΈΠ½ΠΎΠ², основными ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΈΠ½Ρ‚Π΅Ρ€Π»Π΅ΠΉΠΊΠΈΠ½Ρ‹ IL6, IL8(CXCL8), IL1Ξ² ΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€ Π½Π΅ΠΊΡ€ΠΎΠ·Π° ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ (tumor necrosis factor Ξ±, TNFΞ±). ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ Π² Ρ„Π°Π·Ρƒ острой Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² Π»Π΅Π³ΠΊΠΈΡ… сопровоТдаСтся ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ², ΠΏΡ€ΠΈΡ‚ΠΎΠΊΠΎΠΌ Π² Π»Π΅Π³ΠΊΠΈΠ΅ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² ΠΈ Π’-ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠ΅ΠΉ Ρ…Π΅ΠΌΠΎΠΊΠΈΠ½ΠΎΠ² – Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ² Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° CXCR3, – основных участников Π³Π΅Π½Π΅Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ воспалСния.Π’ настоящСй Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΌΡ‹ ΠΈΠ·ΡƒΡ‡ΠΈΠ»ΠΈ Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π½ΠΎΠ²ΠΎΠ³ΠΎ соСдинСния XC221GI Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ IL6 ΠΈ IL8 Π² условиях ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π Π‘Π’ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ in vitro Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ Π»Π΅Π³ΠΊΠΎΠ³ΠΎ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° А549 ΠΈ in vivo Π² Π»Π΅Π³ΠΊΠΈΡ… Ρ…Π»ΠΎΠΏΠΊΠΎΠ²Ρ‹Ρ… крыс. ΠœΡ‹ Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠ·ΡƒΡ‡ΠΈΠ»ΠΈ влияниС XC221GI Π½Π° ΠΏΡ€ΠΈΡ‚ΠΎΠΊ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² Π² Π»Π΅Π³ΠΊΠΈΠ΅ ΠΌΡ‹ΡˆΠ΅ΠΉ ΠΈ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΡŽ Ρ…Π΅ΠΌΠΎΠΊΠΈΠ½ΠΎΠ² CXCL10, CXCL9 ΠΈ CXCL11 Π² Π±Ρ€ΠΎΠ½Ρ…ΠΎΠ°Π»ΡŒΠ²Π΅ΠΎΠ»ΡΡ€Π½ΠΎΠΌ Π»Π°Π²Π°ΠΆΠ΅ послС ΠΈΠ½Ρ‚Ρ€Π°Π½Π°Π·Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ввСдСния ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹ΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ€ΠΎΠ½Π° Ξ³ (IFNΞ³).Π’ Ρ…ΠΎΠ΄Π΅ исслСдования Π±Ρ‹Π»Π° продСмонстрирована ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° XC221GI, Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‰Π°ΡΡΡ Π² сниТСнии ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² воспалСния Π² Π»Π΅Π³ΠΊΠΈΡ…, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΡ… Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½Ρ‹ ΠΈ Ρ…Π΅ΠΌΠΎΠΊΠΈΠ½Ρ‹ IL6, IL8, CXCL10, CXCL9, CXCL11 ΠΈ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»Ρ‹, приводя ΠΊ сниТСнию Π»Π΅Π³ΠΎΡ‡Π½ΠΎΠΉ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‚ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° XC221GI Π² качСствС срСдства ΡƒΠΏΡ€Π΅ΠΆΠ΄Π°ΡŽΡ‰Π΅ΠΉ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΏΡ€ΠΈ вирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ рСспираторного Ρ‚Ρ€Π°ΠΊΡ‚Π°

    ВыявлСниС ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ количСства натрия Π² ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π΅ Π² условиях Π½Π°Ρ‚Ρ€ΠΈΠ΅Π²ΠΎΠΉ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ двухэнСргСтичСской ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ

    Get PDF
    Introduction. The direct relationship between the level of sodium intake, arterial hypertension, followed by the development of heart failure, a hypothesis of the direct influence of excessive sodium accumulation in myocardial glycosaminoglycans seems quite probable, which can further contribute to the occurrence of diastolic dysfunction and heart failure.The aim of the study was to identify excess sodium in rats under conditions of sodium loading, in comparison with rats at a normal level of sodium intake. Materials and methods. Ten male Wistar rats with the same body weight were divided into two groups: the excess salt intake group and the normal salt intake group. Estimation of the amount of Na and NaCl in the animal myocardium was performed using dual energy computed tomography (DECT) samples. Samples were scanned on a Revolution GSI tomograph (GE Healthcare). For statistical processing of the obtained data, the R language was used. Results. The results of the study showed that the accumulation of Na and NaCl does not depend on the average level of animal feed intake, there is no correlation between weight and accumulation of excess Na in tissues, the level of Na and NaCl detected in myocardial tissue significantly increases the likelihood of a high salt diet in rats, and a relationship between the content Na in the myocardium and NaCl+H2O. Conclusion. The experiment confirmed the existence of a reliable relationship between the sodium compounds calculated on the basis of DECT and theΒ content of these compounds in the samples. The small number of samples did not allow us to calculate normalized rats, but we noted a clear difference between the control group and the high sodium diet.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Учитывая ΠΏΡ€ΡΠΌΡƒΡŽ взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ потрСблСния натрия (Na), Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Π³ΠΈΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠ΅ΠΉ с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ сСрдСчной нСдостаточности, достаточно вСроятным прСдставляСтся Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π° нСпосрСдствСнного влияния ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ накоплСния NaΠ²Π³Π»ΠΈΠΊΠΎΠ·Π°ΠΌΠΈΠ½ΠΎΠ³Π»ΠΈΠΊΠ°Π½Π°Ρ… ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π°, Ρ‡Ρ‚ΠΎ Π² дальнСйшСм ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ возникновСнию диастоличСской дисфункции ΠΈ сСрдСчной нСдостаточности. ЦСль исслСдования: выявлСниС ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ количСства натрия Ρƒ крыс, находящихся Π² условиях Π½Π°Ρ‚Ρ€ΠΈΠ΅Π²ΠΎΠΉ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ, Π² сравнСнии с крысами, находящимися Π½Π° Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ потрСблСния натрия. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π”Π΅ΡΡΡ‚ΡŒ самцов крыс Ρ€ΠΎΠ΄Π° Wistar с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ массой Ρ‚Π΅Π»Π° Π±Ρ‹Π»ΠΈ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Ρ‹ Π½Π° Π΄Π²Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹: Π³Ρ€ΡƒΠΏΠΏΠ° ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ потрСблСния соли ΠΈ Π³Ρ€ΡƒΠΏΠΏΠ° Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ потрСблСния соли. ΠžΡ†Π΅Π½ΠΊΠ° количСства натрия ΠΈ NaCl Π² ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π΅ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… Π±Ρ‹Π»Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡ€ΠΈ двухэнСргСтичСской ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ (Π”Π­ΠšΠ’) ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ². Π‘ΠΊΠ°Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² выполняли Π½Π° Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„Π΅ RevolutionGSI (GEHealthcare). Для статистичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… использовали язык R. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ: Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ натрия ΠΈ NaCl, Π½Π΅ зависит ΠΎΡ‚ срСднСго уровня потрСблСния ΠΊΠΎΡ€ΠΌΠ° ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹ΠΌ, отсутствуСт коррСляция ΠΌΠ΅ΠΆΠ΄Ρƒ вСсом ΠΈ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ накоплСния ΠΈΠ·Π±Ρ‹Ρ‚ΠΊΠ° натрия Π² тканях, ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ натрия ΠΈ NaCl Π² Ρ‚ΠΊΠ°Π½ΠΈ ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π° Π·Π½Π°Ρ‡ΠΈΠΌΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ°ΡŽΡ‚ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ высокосолСвой Π΄ΠΈΠ΅Ρ‚Ρ‹ Ρƒ крысы, выявлСна Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ содСрТаниСм натрия Π² ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π΅ ΠΈ NaCl+Н2О. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ЭкспСримСнт ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΠ» Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ достовСрной связи вычислСнных Π½Π° основании Π”Π­ΠšΠ’ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ соСдинСний натрия с содСрТаниСм этих соСдинСний Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ…. МалоС количСство ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π½Π°ΠΌ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π½ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ для крыс, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΌΡ‹ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈ Ρ‡Π΅Ρ‚ΠΊΠΎΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ ΠΈ Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ с высоким содСрТаниСм натрия Π² Π΄ΠΈΠ΅Ρ‚Π΅

    Expression of genes ofΒ cytokines, transcriptionΒ factors andΒ differentiation antigens inΒ human dendritic cells activated by double-strandedΒ DNA

    Get PDF
    One of the most important properties of extracellular double-stranded DNA related to the treatment of various diseases is its ability to activate effector cells of the immune system (anti-tumor and vaccinal immunity) through dendritic cells (DCs). The stimulatory effect of DNA on DCs is mediated by the TLR9 signaling pathway and/or through a system of cytosolic sensors and is manifested by increased expression of MHC class II antigens and costimulatory molecules and by increased synthesis of immunoregulatory cytokines. In this work, the expression of cytokines, differentiation antigens and transcription factor genes has been investigated in DCs activated by double-stranded human DNA (i) without any additional factors, (ii) using a lipophilic agent, and (iii) by blocking TLR9 with chloroquine. Evaluation of the DNA effect was carried out after the 6- and 24-hour exposure. It was found that the preparation of double-stranded DNA transfected by Lipofectamine 2000 boosts DCs at the same level as Poly(dA : dT), aΒ synthetic equivalent of double-stranded DNA. It was discovered that combined application of DNA and chloroquine enhances expression of the IFN-Ξ±, IFN-Ξ², IFN-Ξ³, ILΒ­8, МБР1, VEGF, CD25, and CD83 genes by hour 24 of incubation. It was for the first time shown that genomic β€œself” double-stranded DNA as a mono agent activates mRNA synthesis of cytokines IFN-Ξ±, IFN-Ξ², IFN-Ξ³, ILΒ­8, ILΒ­10, and VEGF in DCs at 6 hours of induction
    corecore