615 research outputs found

    On SAT representations of XOR constraints

    Full text link
    We study the representation of systems S of linear equations over the two-element field (aka xor- or parity-constraints) via conjunctive normal forms F (boolean clause-sets). First we consider the problem of finding an "arc-consistent" representation ("AC"), meaning that unit-clause propagation will fix all forced assignments for all possible instantiations of the xor-variables. Our main negative result is that there is no polysize AC-representation in general. On the positive side we show that finding such an AC-representation is fixed-parameter tractable (fpt) in the number of equations. Then we turn to a stronger criterion of representation, namely propagation completeness ("PC") --- while AC only covers the variables of S, now all the variables in F (the variables in S plus auxiliary variables) are considered for PC. We show that the standard translation actually yields a PC representation for one equation, but fails so for two equations (in fact arbitrarily badly). We show that with a more intelligent translation we can also easily compute a translation to PC for two equations. We conjecture that computing a representation in PC is fpt in the number of equations.Comment: 39 pages; 2nd v. improved handling of acyclic systems, free-standing proof of the transformation from AC-representations to monotone circuits, improved wording and literature review; 3rd v. updated literature, strengthened treatment of monotonisation, improved discussions; 4th v. update of literature, discussions and formulations, more details and examples; conference v. to appear LATA 201

    Parasite infections in a social carnivore: Evidence of their fitness consequences and factors modulating infection load

    Get PDF
    There are substantial individual differences in parasite composition and infection load in wildlife populations. Few studies have investigated the factors shaping this heterogeneity in large wild mammals or the impact of parasite infections on Darwinian fitness, particularly in juveniles. A host's parasite composition and infection load can be shaped by factors that determine contact with infective parasite stages and those that determine the host's resistance to infection, such as abiotic and social environmental factors, and age. Host–parasite interactions and synergies between coinfecting parasites may also be important. We test predictions derived from these different processes to investigate factors shaping infection loads (fecal egg/oocyte load) of two energetically costly gastrointestinal parasites: the hookworm Ancylostoma and the intracellular Cystoisospora, in juvenile spotted hyenas (Crocuta crocuta) in the Serengeti National Park, in Tanzania. We also assess whether parasite infections curtail survival to adulthood and longevity. Ancylostoma and Cystoisospora infection loads declined as the number of adult clan members increased, a result consistent with an encounter‐reduction effect whereby adults reduced encounters between juveniles and infective larvae, but were not affected by the number of juveniles in a clan. Infection loads decreased with age, possibly because active immune responses to infection improved with age. Differences in parasite load between clans possibly indicate variation in abiotic environmental factors between clan den sites. The survival of juveniles (<365 days old) to adulthood decreased with Ancylostoma load, increased with age, and was modulated by maternal social status. High‐ranking individuals with low Ancylostoma loads had a higher survivorship during the first 4 years of life than high‐ranking individuals with high Ancylostoma loads. These findings suggest that high infection loads with energetically costly parasites such as hookworms during early life can have negative fitness consequences

    YSO jets in the Galactic Plane from UWISH2: II - Outflow Luminosity and Length distributions in Serpens and Aquila

    Get PDF
    Jets and outflows accompany the mass accretion process in protostars and young stellar objects. Using a large and unbiased sample, they can be used to study statistically the local feedback they provide and the typical mass accretion history. Here we analyse such a sample of Molecular Hydrogen emission line Objects in the Serpens and Aquila part of the Galactic Plane. Distances are measured by foreground star counts with an accuracy of 25%. The resulting spacial distribution and outflow luminosities indicate that our objects sample the formation of intermediate mass objects. The outflows are unable to provide a sizeable fraction of energy and momentum to support, even locally, the turbulence levels in their surrounding molecular clouds. The fraction of parsec scale flows is one quarter and the typical dynamical jet age of the order of 1E4yrs. Groups of emission knots are ejected every 1E3yrs. This might indicate that low level accretion rate fluctuations and not FU-Ori type events are responsible for the episodic ejection of material. Better observational estimates of the FU-Ori duty cycle are needed.Comment: 16pages, 3tables, 10figures, accepted for publication by MNRAS, a version with higher resolution figures can be found at http://astro.kent.ac.uk/~df

    Evidence of triggered star formation in G327.3-0.6. Dust-continuum mapping of an infrared dark cloud with P-ArT\'eMiS

    Get PDF
    Aims. Expanding HII regions and propagating shocks are common in the environment of young high-mass star-forming complexes. They can compress a pre-existing molecular cloud and trigger the formation of dense cores. We investigate whether these phenomena can explain the formation of high-mass protostars within an infrared dark cloud located at the position of G327.3-0.6 in the Galactic plane, in between two large infrared bubbles and two HII regions. Methods: The region of G327.3-0.6 was imaged at 450 ? m with the CEA P-ArT\'eMiS bolometer array on the Atacama Pathfinder EXperiment telescope in Chile. APEX/LABOCA and APEX-2A, and Spitzer/IRAC and MIPS archives data were used in this study. Results: Ten massive cores were detected in the P-ArT\'eMiS image, embedded within the infrared dark cloud seen in absorption at both 8 and 24 ?m. Their luminosities and masses indicate that they form high-mass stars. The kinematical study of the region suggests that the infrared bubbles expand toward the infrared dark cloud. Conclusions: Under the influence of expanding bubbles, star formation occurs in the infrared dark areas at the border of HII regions and infrared bubbles.Comment: 4 page

    Parameterized complexity of DPLL search procedures

    Get PDF
    We study the performance of DPLL algorithms on parameterized problems. In particular, we investigate how difficult it is to decide whether small solutions exist for satisfiability and other combinatorial problems. For this purpose we develop a Prover-Delayer game which models the running time of DPLL procedures and we establish an information-theoretic method to obtain lower bounds to the running time of parameterized DPLL procedures. We illustrate this technique by showing lower bounds to the parameterized pigeonhole principle and to the ordering principle. As our main application we study the DPLL procedure for the problem of deciding whether a graph has a small clique. We show that proving the absence of a k-clique requires n steps for a non-trivial distribution of graphs close to the critical threshold. For the restricted case of tree-like Parameterized Resolution, this result answers a question asked in [11] of understanding the Resolution complexity of this family of formulas

    Tracking the Enigmatic Globular Cluster Ultracompact X-ray Binary X1850--087: Extreme Radio Variability in the Hard State

    Full text link
    The conditions under which accreting neutron stars launch radio-emitting jets and/or outflows are still poorly understood. The ultracompact X-ray binary X1850--087, located in the globular cluster NGC 6712, is a persistent atoll-type X-ray source that has previously shown unusual radio continuum variability. Here we present the results of a pilot radio monitoring program of X1850--087 undertaken with the Karl G. Jansky Very Large Array, with simultaneous or quasi-simultaneous Swift/XRT data obtained at each epoch. The binary is clearly detected in the radio in two of the six new epochs. When combined with previous data, these results suggest that X1850--087 shows radio emission at a slightly elevated hard state X-ray luminosity of L_X > 2x10^36 erg/s, but no radio emission in its baseline hard state L_X ~10^36 erg/s. No clear X-ray spectral changes are associated with this factor of > 10 radio variability. At all detected epochs X1850--087 has a flat-to-inverted radio spectral index, more consistent with the partially absorbed optically thick synchrotron of a compact jet rather than the evolving optically thick to thin emission associated with transient expanding synchrotron-emitting ejecta. If the radio emission in X1850--087 is indeed due to a compact jet, then it is plausibly being launched and quenched in the hard state on timescales as short as a few days. Future radio monitoring of X1850--087 could help elucidate the conditions under which compact jets are produced around hard state accreting neutron stars.Comment: 9 pages, 2 figures, 2 tables, accepted for publication in Ap

    Lifting QBF Resolution Calculi to DQBF

    Get PDF
    We examine the existing resolution systems for quantified Boolean formulas (QBF) and answer the question which of these calculi can be lifted to the more powerful Dependency QBFs (DQBF). An interesting picture emerges: While for QBF we have the strict chain of proof systems Q-Res < IR-calc < IRM-calc, the situation is quite different in DQBF. Q-Res and likewise universal resolution are too weak: they are not complete. IR-calc has the right strength: it is sound and complete. IRM-calc is too strong: it is not sound any more, and the same applies to long-distance resolution. Conceptually, we use the relation of DQBF to EPR and explain our new DQBF calculus based on IR-calc as a subsystem of first-order resolutio

    On Tackling the Limits of Resolution in SAT Solving

    Full text link
    The practical success of Boolean Satisfiability (SAT) solvers stems from the CDCL (Conflict-Driven Clause Learning) approach to SAT solving. However, from a propositional proof complexity perspective, CDCL is no more powerful than the resolution proof system, for which many hard examples exist. This paper proposes a new problem transformation, which enables reducing the decision problem for formulas in conjunctive normal form (CNF) to the problem of solving maximum satisfiability over Horn formulas. Given the new transformation, the paper proves a polynomial bound on the number of MaxSAT resolution steps for pigeonhole formulas. This result is in clear contrast with earlier results on the length of proofs of MaxSAT resolution for pigeonhole formulas. The paper also establishes the same polynomial bound in the case of modern core-guided MaxSAT solvers. Experimental results, obtained on CNF formulas known to be hard for CDCL SAT solvers, show that these can be efficiently solved with modern MaxSAT solvers

    Using smart meters to estimate low voltage losses

    Get PDF
    Losses on low voltage networks are often substantial. For example, in the UK they have been estimated as being 4% of the energy supplied by low voltage networks. However, the breakdown of the losses to individual conductors and their split over time are poorly understood as generally only the peak demands and average loads over several months have been recorded. The introduction of domestic smart meters has the potential to change this. How domestic smart meter readings can be used to estimate the actual losses is analysed. In particular, the accuracy of using 30 minute readings compared with 1 minute readings, and how this accuracy could be improved, were investigated. This was achieved by assigning the data recorded by 100 smart meters with a time resolution of 1 minute to three test networks. Smart meter data from three sources were used in the investigation. It was found that 30 minute resolution data underestimated the losses by between 9% and 24%. By fitting an appropriate model to the data, it was possible to reduce the inaccuracy by approximately 50%. Having a smart meter time resolution of 10 minutes rather than 30 gave little improvement to the accuracy
    corecore