301 research outputs found

    Linear, diatomic crystal: single-electron states and large-radius excitons

    Get PDF
    The large-radius exciton spectrum in a linear crystal with two atoms in the unit cell was obtained using the single-electron eigenfunctions and the band structure, which were found by the zero-range potential (ZRP) method. The ground-state exciton binding energies for the crystal in vacuum appeared to be larger than the corresponding energy gaps for any set of the crystal parameters.Comment: 9 pages, 1 figure, 1 tabl

    Бучасні напрямки створСння Ρ‚Π° удосконалСння ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΠΊΡ–Π²

    Get PDF
    The article describes the topical areas of improvement of probiotics, such as: study of the physiology of promising industrial strains in order to select nutrient media for their cultivation; Β determination of sorption processes of probiotic bacteria as a general biological process; study of the role of metabolic products and biologically active substances of microbial cells to define the nature of the adhesins and the mechanism of antagonistic activity; development of technology for the manufacture of complex products based on consortia of bacteria with a wide spectrum of antagonistic activity; research and synergistic inhibitory effects of various species and strains of probiotic bacteria; improved methods of control of antagonistic activity of preparations containing viable microbial cells and the development of methods for the determination of living organisms and the development of drugs for the correction of the intestinal microflora is not only, but also other open cavities of the human body.Π‘Ρ‚Π°Ρ‚ΡŒΡ посвящСна Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌ направлСниям ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡ€ΠΎΠ±ΠΈΠΎΡ‚ΠΈΠΊΠΎΠ², Ρ‚Π°ΠΊΠΈΠΌ ΠΊΠ°ΠΊ: исслСдованиС Ρ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ пСрспСктивных производствСнных ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ с Ρ†Π΅Π»ΡŒΡŽ ΠΏΠΎΠ΄Π±ΠΎΡ€Π° ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… срСд для ΠΈΡ… ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ;Β ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ процСссов сорбции пробиотичСских Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΠΊΠ°ΠΊ общСбиологичСского процСсса;Β ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ€ΠΎΠ»ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΈ БАВ ΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ для опрСдСлСния ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ Π°Π΄Π³Π΅Π·ΠΈΠ½ΠΎΠ² ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° антагонистичСской активности; Β Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ изготовлСния комплСксных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Π½Π° основС консорциумов Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ с ΡˆΠΈΡ€ΠΎΠΊΠΈΠΌ спСктром антагонистичСской активности; исслСдованиС синСргичСского ΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ дСйствия Ρ€Π°Π·Π½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ² ΠΈ ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² пробиотичСских Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ;Β ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² контроля антагонистичСской активности ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ², Β ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ содСрТат ТизнСспособныС  ΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈΡ… опрСдСлСния; созданиС ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² для ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΠΎΡ€Ρ‹ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ°, Π½ΠΎ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Ρ… полостСй ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Бтаття присвячСна Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΈΠΌ напрямкам удосконалСння ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΠΊΡ–Π², Ρ‚Π°ΠΊΠΈΠΌ як: дослідТСння Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ— пСрспСктивних Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ‡ΠΈΡ… ΡˆΡ‚Π°ΠΌΡ–Π² Π· ΠΌΠ΅Ρ‚ΠΎΡŽ ΠΏΡ–Π΄Π±ΠΎΡ€Ρƒ ΠΏΠΎΠΆΠΈΠ²Π½ΠΈΡ… сСрСдовищ для Ρ—Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΡƒΠ²Π°Π½Π½Ρ; визначСння процСсів сорбції ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΡ‡Π½ΠΈΡ… Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–ΠΉ як Π·Π°Π³Π°Π»ΡŒΠ½ΠΎΠ±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ процСсу; вивчСння Ρ€ΠΎΠ»Ρ– ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ–Π² ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»Ρ–Π·ΠΌΡƒ Ρ‚Π° Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ ΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ для визначСння ΠΏΡ€ΠΈΡ€ΠΎΠ΄ΠΈ Π°Π΄Π³Π΅Π·ΠΈΠ½Ρ–Π² Ρ– ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΡƒ антагоністичної активності; Β Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ— виготовлСння комплСксних ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ–Π² Π½Π° основі консорціумів Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–ΠΉ Π· ΡˆΠΈΡ€ΠΎΠΊΠΈΠΌ спСктром антагоністичної активності; дослідТСння синСргічної Ρ‚Π° Ρ–Π½Π³Ρ–Π±Ρ–Ρ‚ΠΎΡ€Π½ΠΎΡ— Π΄Ρ–Ρ— Ρ€Ρ–Π·Π½ΠΈΡ… Π²ΠΈΠ΄Ρ–Π² Ρ‚Π° ΡˆΡ‚Π°ΠΌΡ–Π² ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΡ‡Π½ΠΈΡ… Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–ΠΉ; вдосконалСння ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽ антагоністичної активності ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ–Π², Ρ‰ΠΎ ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ ΠΆΠΈΡ‚Ρ‚Ρ”Π·Π΄Π°Ρ‚Π½Ρ– ΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρ– ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ Ρ‚Π° Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² визначСння вмісту ΠΆΠΈΠ²ΠΈΡ… ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π²;Β Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ–Π² для ΠΊΠΎΡ€Π΅ΠΊΡ†Ρ–Ρ— ΠΌΡ–ΠΊΡ€ΠΎΡ„Π»ΠΎΡ€ΠΈ Π½Π΅ лишС ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΡƒ, Π° ΠΉ Ρ–Π½ΡˆΠΈΡ… Π²Ρ–Π΄ΠΊΡ€ΠΈΡ‚ΠΈΡ… ΠΏΠΎΡ€ΠΎΠΆΠ½ΠΈΠ½ ΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡƒ людини.

    One-electron states and interband optical absorption in single-wall carbon nanotubes

    Full text link
    Explicit expressions for the wave functions and dispersion equation for the band p - electrons in single-wall carbon nanotubes are obtained within the method of zero-range potentials. They are then used to investigate the absorption spectrum of polarized light caused by direct interband transitions in isolated nanotubes. It is shown that, at least, under the above approximations, the circular dichroism is absent in chiral nanotubes for the light wave propagating along the tube axis. The results obtained are compared with those calculated in a similar way for a graphite plane.Comment: 16 pages, 8 figures, 1 tabl

    Spatially and polarization resolved plasmon mediated transmission through continuous metal films

    Full text link
    The experimental demonstration and characterization is made of the plasmon-mediated resonant transmission through an embedded undulated continuous thin metal film under normal incidence. 1D undulations are shown to enable a spatially resolved polarisation filtering whereas 2D undulations lead to spatially resolved, polarization independent transmission. Whereas the needed submicron microstructure lends itself in principle to CD-like low-cost mass replication by means of injection moulding and embossing, the present paper demonstrates the expected transmission effects on experimental models based on metal-coated photoresist gratings. The spectral and angular dependence in the neighbourhood of resonance are investigated and the question of the excess losses exhibited by surface plasmons is discusse

    Π•Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ дорощування Π³Ρ–Π±Ρ€ΠΈΠ΄Π½ΠΈΡ… поросят Π· Ρ€Ρ–Π·Π½ΠΎΡŽ масою ΠΏΡ€ΠΈ постановці Π·Π° Ρ€Ρ–Π΄ΠΊΠΎΡ— систСми Ρ—Ρ… Π³ΠΎΠ΄Ρ–Π²Π»Ρ–

    Get PDF
    The intensity of growth of piglets, their preservation during rearing, and the payment of feed by the increments of animals that were placed for rearing with a design live weight of 7 kg and 20 % less than the design weight – 5.5 kg were studied. Also, the ratio of consumption of compound feed of different recipes during rearing, their cost, and the efficiency of rearing piglets at different staged live weights were studied. It was established that piglets that weighed 1.58 kg less at the beginning of rearing, when placed on rearing during this period, showed 20.9 % lower growth energy, due to which they had 19.6 % lower absolute growth during this period, which caused together with a lower production weight, a 20.3 % lower weight when transferred to fattening and an 8.8 % worse feed payment in increments, they consumed 31.4 % more of the expensive first pre-starter feed during the growing period, and 11.9 % less than the second cheaper pre-starter compound feed and 42.6 % less than the cheapest starter compound feed, as a result of which the cost of feed consumed by the animals of the experimental group was 10.6 % lower compared to the analogs of the experimental group. But taking into account the significantly lower absolute growth of the animals of the experimental group, the cost of feed for 1 kg of growth was 11.2 % higher in comparison with the similar indicator of animals that were put on growing at a designed live weight of 7.0 kg. At the same time, rearing piglets under the conditions of putting them into this process with the design live weight contributed to a decrease of 11.2 % in the cost of feed per kilogram of growth, an increase of 20.3 % in the cost of one piglet after the completion of rearing, and a 23.1 % increase in the income from its sale and 1.07 % higher profitability of raising one head, but resulted in 10.6 % higher feed and operating cost of rearing 1 head and 19.6 % higher operating cost of one piglet at the end of rearing.Π’ΠΈΠ²Ρ‡Π°Π»ΠΈΡΡŒ Ρ–Π½Ρ‚Π΅Π½ΡΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ росту поросят, Ρ—Ρ… Π·Π±Π΅Ρ€Π΅ΠΆΠ΅Π½Ρ–ΡΡ‚ΡŒ ΠΏΡ–Π΄ час дорощування Ρ‚Π° ΠΎΠΏΠ»Π°Ρ‚Π° ΠΊΠΎΡ€ΠΌΡƒ приростами Ρ‚Π²Π°Ρ€ΠΈΠ½, які Π±ΡƒΠ»ΠΈ поставлСні Π½Π° дорощування Π·Π° ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π½ΠΎΡ— ΠΆΠΈΠ²ΠΎΡ— маси 7 ΠΊΠ³ Ρ‚Π° Π½Π° 20 % мСншою Π²Ρ–Π΄ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π½ΠΎΡ— – 5,5 ΠΊΠ³. Π’Π°ΠΊΠΎΠΆ Π²ΠΈΠ²Ρ‡Π°Π»ΠΎΡΡŒ ΡΠΏΡ–Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½Ρ споТивання ΠΊΠΎΠΌΠ±Ρ–ΠΊΠΎΡ€ΠΌΡ–Π² Ρ€Ρ–Π·Π½ΠΈΡ… Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΡƒΡ€ ΠΏΡ–Π΄ час дорощування, їхня Π²Π°Ρ€Ρ‚Ρ–ΡΡ‚ΡŒ Ρ‚Π° Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ дорощування поросят Π·Π° Ρ€Ρ–Π·Π½ΠΎΡ— постановочної ΠΆΠΈΠ²ΠΎΡ— маси. ВстановлСнно, Ρ‰ΠΎ поросята, які ΠΌΠ°Π»ΠΈ Π½Π° ΠΏΠΎΡ‡Π°Ρ‚ΠΎΠΊ дорощування ΠΌΠ΅Π½ΡˆΡƒ Π½Π° 1,58 ΠΊΠ³ Π²Π°Π³Ρƒ, ΠΏΡ€ΠΈ постановці Π½Π° дорощування ΠΏΡ–Π΄ час Ρ†ΡŒΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Ρ–ΠΎΠ΄Ρƒ виявили Π½Π° 20,9 % Π½ΠΈΠΆΡ‡Ρƒ Π΅Π½Π΅Ρ€Π³Ρ–ΡŽ росту, Π·Π° Ρ€Π°Ρ…ΡƒΠ½ΠΎΠΊ Ρ‡ΠΎΠ³ΠΎ ΠΌΠ°Π»ΠΈ ΠΌΠ΅Π½ΡˆΡ– Π½Π° 19,6 % Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½Ρ– прирости Π·Π° Ρ†Π΅ΠΉ ΠΏΠ΅Ρ€Ρ–ΠΎΠ΄, Ρ‰ΠΎ спричинило Ρ€Π°Π·ΠΎΠΌ Π· мСншою ΠΏΠΎΡΡ‚Π°Π½ΠΎΠ²ΠΎΡ‡Π½ΠΎΡŽ масою Π½Π° 20,3 % Π½ΠΈΠΆΡ‡Ρƒ масу ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Π²Π΅Π΄Π΅Π½Π½Ρ– Π½Π° Π²Ρ–Π΄Π³ΠΎΠ΄Ρ–Π²Π»ΡŽ Ρ‚Π° Π³Ρ–Ρ€ΡˆΡƒ Π½Π° 8,8 % ΠΎΠΏΠ»Π°Ρ‚Ρƒ ΠΊΠΎΡ€ΠΌΡƒ приростами, Π²ΠΎΠ½ΠΈ споТили Π·Π° час дорощування Π½Π° 31,4 % Π±Ρ–Π»ΡŒΡˆΠ΅ Π΄ΠΎΡ€ΠΎΠ³ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€ΡˆΠΎΠ³ΠΎ прСстартСрного ΠΊΠΎΡ€ΠΌΡƒ, Ρ‚Π° Π½Π° 11,9% мСншС дСшСвшого Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ прСстартСрного ΠΊΠΎΠΌΠ±Ρ–ΠΊΠΎΡ€ΠΌΡƒ Ρ– Π½Π° 42,6% мСншС Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆ Π΄Π΅ шСвшого стартСрного ΠΊΠΎΠΌΠ±Ρ–ΠΊΠΎΡ€ΠΌΡƒ, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ– Ρ‡ΠΎΠ³ΠΎ Π²Π°Ρ€Ρ‚Ρ–ΡΡ‚ΡŒ споТитих ΠΊΠΎΡ€ΠΌΡ–Π² Ρ‚Π²Π°Ρ€ΠΈΠ½Π°ΠΌΠΈ дослідної Π³Ρ€ΡƒΠΏΠΈ виявилось Π½Π° 10,6 % мСншою порівняно Π· Π°Π½Π°Π»ΠΎΠ³Π°ΠΌΠΈ дослідної Π³Ρ€ΡƒΠΏΠΈ. АлС Π²Ρ€Π°Ρ…ΠΎΠ²ΡƒΡŽΡ‡ΠΈ суттєво Π½ΠΈΠΆΡ‡ΠΈΠΉ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΈΠΉ приріст Ρƒ Ρ‚Π²Π°Ρ€ΠΈΠ½ дослідної Π³Ρ€ΡƒΠΏΠΈ, ΠΊΠΎΡ€ΠΌΠΎΠ²Π° ΡΠΎΠ±Ρ–Π²Π°Ρ€Ρ‚Ρ–ΡΡ‚ΡŒ 1 ΠΊΠ³ приросту Ρƒ Π½ΠΈΡ… виявилась Π½Π° 11,2 % Π²ΠΈΡ‰ΠΎΡŽ порівняно Π· Π°Π½Π°Π»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΌ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΎΠΌ Ρ‚Π²Π°Ρ€ΠΈΠ½, яких ставили Π½Π° дорощування Π·Π° ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π½ΠΎΡ— ΠΆΠΈΠ²ΠΎΡ— маси 7,0 ΠΊΠ³. Водночас дорощування порсят Π·Π° ΡƒΠΌΠΎΠ² постановки Ρ—Ρ… Π½Π° Ρ†Π΅ΠΉ процСс Π· ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π½ΠΎΡŽ Тивою масою посприяло змСншСнню Π½Π° 11,2 % ΠΊΠΎΡ€ΠΌΠΎΠ²ΠΎΡ— собівартості ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΊΡ–Π»ΠΎΠ³Ρ€Π°ΠΌΠ° приросту, ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½Π½ΡŽ Π½Π° 20,3 % вартості ΠΎΠ΄Π½ΠΎΠ³ΠΎ поросяти ΠΏΠΎ Π·Π°Π²Π΅Ρ€ΡˆΠ΅Π½Π½Ρ– дорощування Ρ‚Π° Π½Π° 23,1 % Π΄ΠΎΡ…ΠΎΠ΄Ρƒ Π²Ρ–Π΄ ΠΉΠΎΠ³ΠΎ Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— Ρ– Π½Π° 1,07 % Π²ΠΈΡ‰Ρ–ΠΉ Ρ€Π΅Π½Ρ‚Π°Π±Π΅Π»ΡŒΠ½ΠΎΡΡ‚Ρ– вирощування ΠΎΠ΄Π½Ρ–Ρ”Ρ— Π³ΠΎΠ»ΠΎΠ²ΠΈ, Π°Π»Π΅ спричинило Π²ΠΈΡ‰Ρƒ Π½Π° 10,6 % ΠΊΠΎΡ€ΠΌΠΎΠ²Ρƒ Ρ‚Π° ΠΎΠΏΠ΅Ρ€Π°Ρ†Ρ–ΠΉΠ½Ρƒ ΡΠΎΠ±Ρ–Π²Π°Ρ€Ρ‚Ρ–ΡΡ‚ΡŒ дорощування 1 Π³ΠΎΠ»ΠΎΠ²ΠΈ Ρ‚Π° Π½Π° 19,6 % ΠΎΠΏΠ΅Ρ€Π°Ρ†Ρ–ΠΉΠ½Ρƒ ΡΠΎΠ±Ρ–Π²Π°Ρ€Ρ‚Ρ–ΡΡ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ³ΠΎ підсвинка Π½Π° ΠΊΡ–Π½Π΅Ρ†ΡŒ дорощування

    Effectiveness of different systems of liquid feeding of piglets for additional growing in the conditions of industrial technology

    Get PDF
    The article, a comparative analysis of the productivity of piglets during rearing under a liquid feeding system with fodder mixtures, which were mixed in the feed containers of the Hydro Mix Pro feeding system of the Big Dutchmen company and with the help of the portioned feeding system Spotmix II of the Austrian company Schauer, is made. It was found that the preparation and distribution of feed using the Spotmix II portioned feeding system resulted in 1.5 % better piglet survival, 9.6 % higher piglet growth rate during rearing, 9.5 % higher absolute gains during this period, higher by 7.3 % of the weight of animals when transferred to fattening compared to analogs that were raised on liquid feeding with feed mixing in feed tanks. It has been proven that piglets that were prepared, transported, and distributed feed using the Spotmix II system consumed 6.0 % more feed per day, consumed 7.0 % more during the period, the cost of which was 10.6 % higher. Meanwhile, their feed conversion was 2.3 % better, with almost the exact feed cost per kilogram gain. The feeding of piglets in growing-out using the Spotmix II portioned liquid feeding system led to a 10.6 % higher cost of feed, a 22.1 % higher amortization costs for the equipment for feed distribution and animal feeding, a 9.6 % higher cost of the growing-out process of one pig, and its cost price at the end of the growing period is 3.4 times higher. At the same time, such feeding contributed to higher growth energy of animals during rearing, which caused a 7.3 % higher sales price of piglets, a 17.3 % higher profit from the sale of one head, and a 5.2 % higher profitability of rearing piglets compared to liquid feeding using Hydro Mix Pro system with feed mixing in feed tanks

    Measurement of Muon Capture on the Proton to 1% Precision and Determination of the Pseudoscalar Coupling g_P

    Full text link
    The MuCap experiment at the Paul Scherrer Institute has measured the rate L_S of muon capture from the singlet state of the muonic hydrogen atom to a precision of 1%. A muon beam was stopped in a time projection chamber filled with 10-bar, ultra-pure hydrogen gas. Cylindrical wire chambers and a segmented scintillator barrel detected electrons from muon decay. L_S is determined from the difference between the mu- disappearance rate in hydrogen and the free muon decay rate. The result is based on the analysis of 1.2 10^10 mu- decays, from which we extract the capture rate L_S = (714.9 +- 5.4(stat) +- 5.1(syst)) s^-1 and derive the proton's pseudoscalar coupling g_P(q^2_0 = -0.88 m^2_mu) = 8.06 +- 0.55.Comment: Updated figure 1 and small changes in wording to match published versio

    Measurement of the Rate of Muon Capture in Hydrogen Gas and Determination of the Proton's Pseudoscalar Coupling gPg_P

    Full text link
    The rate of nuclear muon capture by the proton has been measured using a new experimental technique based on a time projection chamber operating in ultra-clean, deuterium-depleted hydrogen gas at 1 MPa pressure. The capture rate was obtained from the difference between the measured ΞΌβˆ’\mu^- disappearance rate in hydrogen and the world average for the ΞΌ+\mu^+ decay rate. The target's low gas density of 1% compared to liquid hydrogen is key to avoiding uncertainties that arise from the formation of muonic molecules. The capture rate from the hyperfine singlet ground state of the ΞΌp\mu p atom is measured to be Ξ›S=725.0Β±17.4sβˆ’1\Lambda_S=725.0 \pm 17.4 s^{-1}, from which the induced pseudoscalar coupling of the nucleon, gP(q2=βˆ’0.88mΞΌ2)=7.3Β±1.1g_P(q^2=-0.88 m_\mu^2)=7.3 \pm 1.1, is extracted. This result is consistent with theoretical predictions for gPg_P that are based on the approximate chiral symmetry of QCD.Comment: submitted to Phys.Rev.Let

    Isolation, crystallization, and investigation of ribosomal protein S8 complexed with specific fragments of rRNA of bacterial or archaeal origin. Biochemistry 66

    Get PDF
    Study of the nature of protein-rRNA complexes is a topical problem of modern molecular biology. Structural studies of rRNA-protein complexes are the most direct and precise method of analysis of these interactions. Because ribosomal proteins are most conservative during evolution, their complexes with specific RNA fragments provide an interesting model for studying RNA-protein interactions. Ribosomal protein S8 from E. coli plays a key role in assembling the small ribosomal subunit The major region of protein S8 binding on 16S rRNA was determined by partial hydrolysis with restric tion endonucleases The binding sites of protein S8 on 16S rRNA are similar in E. coli and T. thermophilus. It was shown that ACCELERATED PUBLICATION 0006 2979/01/6609 0948$25.00 Β©2001 MAIK "Nauka / Interperiodica" * To whom correspondence should be addressed. Vol. 66, No. 9, 2001, pp. 948 953. Translated from Biokhimiya, Vol. 66, No. 9, 2001, pp. 1165 1171. Original Russian Text Copyright Β© 2001 Abstract-The core ribosomal protein S8 binds to the central domain of 16S rRNA independently of other ribosomal proteins and is required for assembling the 30S subunit. It has been shown with E. coli ribosomes that a short rRNA fragment restrict ed by nucleotides 588 602 and 636 651 is sufficient for strong and specific protein S8 binding. In this work, we studied the complexes formed by ribosomal protein S8 from Thermus thermophilus and Methanococcus jannaschii with short rRNA frag ments isolated from the same organisms. The dissociation constants of the complexes of protein S8 with rRNA fragments were determined. Based on the results of binding experiments, rRNA fragments of different length were designed and syn thesized in preparative amounts in vitro using T7 RNA polymerase. Stable S8-RNA complexes were crystallized. Crystals were obtained both for homologous bacterial and archaeal complexes and for hybrid complexes of archaeal protein with bac terial rRNA. Crystals of the complex of protein S8 from M. jannaschii with the 37 nucleotide rRNA fragment from the same organism suitable for X ray analysis were obtained
    • …
    corecore