137 research outputs found

    A Cost-Effectiveness Protocol for Flood-Mitigation Plans Based on Leeds’ Boxing Day 2015 Floods

    Get PDF
    Inspired by the Boxing Day 2015 flood of the River Aire in Leeds, UK, and subsequent attempts to mitigate adverse consequences of flooding, the goals considered are: (i) to revisit the concept of flood-excess volume (FEV) as a complementary diagnostic for classifying flood events; (ii) to establish a new roadmap/protocol for assessing flood-mitigation schemes using FEV; and, (iii) to provide a clear, graphical cost-effectiveness analysis of flood mitigation, exemplified for a hypothetical scheme partially based on actual plans. We revisit the FEV concept and present it as a three-panel graph using thresholds and errors. By re-expressing FEV as a 2m -deep square lake of equivalent capacity, one can visualise its dimensions in comparison with the river valley considered. Cost-effectiveness of flood-mitigation measures is expressed within the FEV square-lake; different scenarios of our hypothetical flood-mitigation scheme are then presented and assessed graphically, with each scenario involving a combination, near and further upstream of Leeds, of higher (than existing) flood-defence walls, enhanced flood-plain storage sites, giving-room-to-the-river bed-widening and natural flood management. Our cost-effectiveness analysis is intended as a protocol to compare and choose between flood-mitigation scenarios in a quantifiable and visual manner, thereby offering better prospects of being understood by a wide audience, including citizens and city-council planners. Using techniques of data analysis combined with general river hydraulics, common-sense and upper-bound estimation, we offer an accessible check of flood-mitigation plans

    Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2)

    Get PDF
    BACKGROUND: Whether the route of early feeding affects outcomes of patients with severe critical illnesses is controversial. We hypothesised that outcomes were better with early first-line enteral nutrition than with early first-line parenteral nutrition. METHODS: In this randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2 trial) done at 44 French intensive-care units (ICUs), adults (18 years or older) receiving invasive mechanical ventilation and vasopressor support for shock were randomly assigned (1:1) to either parenteral nutrition or enteral nutrition, both targeting normocaloric goals (20-25 kcal/kg per day), within 24 h after intubation. Randomisation was stratified by centre using permutation blocks of variable sizes. Given that route of nutrition cannot be masked, blinding of the physicians and nurses was not feasible. Patients receiving parenteral nutrition could be switched to enteral nutrition after at least 72 h in the event of shock resolution (no vasopressor support for 24 consecutive hours and arterial lactate <2 mmol/L). The primary endpoint was mortality on day 28 after randomisation in the intention-to-treat-population. This study is registered with ClinicalTrials.gov, number NCT01802099. FINDINGS: After the second interim analysis, the independent Data Safety and Monitoring Board deemed that completing patient enrolment was unlikely to significantly change the results of the trial and recommended stopping patient recruitment. Between March 22, 2013, and June 30, 2015, 2410 patients were enrolled and randomly assigned; 1202 to the enteral group and 1208 to the parenteral group. By day 28, 443 (37%) of 1202 patients in the enteral group and 422 (35%) of 1208 patients in the parenteral group had died (absolute difference estimate 2·0%; [95% CI -1·9 to 5·8]; p=0·33). Cumulative incidence of patients with ICU-acquired infections did not differ between the enteral group (173 [14%]) and the parenteral group (194 [16%]; hazard ratio [HR] 0·89 [95% CI 0·72-1·09]; p=0·25). Compared with the parenteral group, the enteral group had higher cumulative incidences of patients with vomiting (406 [34%] vs 246 [20%]; HR 1·89 [1·62-2·20]; p<0·0001), diarrhoea (432 [36%] vs 393 [33%]; 1·20 [1·05-1·37]; p=0·009), bowel ischaemia (19 [2%] vs five [<1%]; 3·84 [1·43-10·3]; p=0·007), and acute colonic pseudo-obstruction (11 [1%] vs three [<1%]; 3·7 [1·03-13·2; p=0·04). INTERPRETATION: In critically ill adults with shock, early isocaloric enteral nutrition did not reduce mortality or the risk of secondary infections but was associated with a greater risk of digestive complications compared with early isocaloric parenteral nutrition. FUNDING: La Roche-sur-Yon Departmental Hospital and French Ministry of Health

    X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    Get PDF
    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases

    Delineating the GRIN1 phenotypic spectrum: a distinct genetic NMDA receptor encephalopathy

    Get PDF
    Objective:To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology.Methods:We collected molecular and clinical data from several diagnostic and research cohorts. Functional consequences of GRIN1 mutations were investigated in Xenopus laevis oocytes.Results:We identified heterozygous de novo GRIN1 mutations in 14 individuals and reviewed the phenotypes of all 9 previously reported patients. These 23 individuals presented with a distinct phenotype of profound developmental delay, severe intellectual disability with absent speech, muscular hypotonia, hyperkinetic movement disorder, oculogyric crises, cortical blindness, generalized cerebral atrophy, and epilepsy. Mutations cluster within transmembrane segments and result in loss of channel function of varying severity with a dominant-negative effect. In addition, we describe 2 homozygous GRIN1 mutations (1 missense, 1 truncation), each segregating with severe neurodevelopmental phenotypes in consanguineous families.Conclusions:De novo GRIN1 mutations are associated with severe intellectual disability with cortical visual impairment as well as oculomotor and movement disorders being discriminating phenotypic features. Loss of NMDA receptor function appears to be the underlying disease mechanism. The identification of both heterozygous and homozygous mutations blurs the borders of dominant and recessive inheritance of GRIN1-associated disorders.Johannes R. Lemke (32EP30_136042/1) and Peter De Jonghe (G.A.136.11.N and FWO/ESF-ECRP) received financial support within the EuroEPINOMICS-RES network (www.euroepinomics.org) within the Eurocores framework of the European Science Foundation (ESF). Saskia Biskup and Henrike Heyne received financial support from the German Federal Ministry for Education and Research (BMBF IonNeurONet: 01 GM1105A and FKZ: 01EO1501). Katia Hardies is a PhD fellow of the Institute for Science and Technology (IWT) Flanders. Ingo Helbig was supported by intramural funds of the University of Kiel, by a grant from the German Research Foundation (HE5415/3-1) within the EuroEPINOMICS framework of the European Science Foundation, and additional grants of the German Research Foundation (DFG, HE5415/5-1, HE 5415/6-1), German Ministry for Education and Research (01DH12033, MAR 10/012), and grant by the German chapter of the International League against Epilepsy (DGfE). The project also received infrastructural support through the Institute of Clinical Molecular Biology in Kiel, supported in part by DFG Cluster of Excellence "Inflammation at Interfaces" and "Future Ocean." The project was also supported by the popgen 2.0 network (P2N) through a grant from the German Ministry for Education and Research (01EY1103) and by the International Coordination Action (ICA) grant G0E8614N. Christel Depienne, Caroline Nava, and Delphine Heron received financial support for exome analyses by the Centre National de Genotypage (CNG, Evry, France)

    Structural and Functional Deficits in a Neuronal Calcium Sensor-1 Mutant Identified in a Case of Autistic Spectrum Disorder

    Get PDF
    Neuronal calcium sensor-1 (NCS-1) is a Ca2+ sensor protein that has been implicated in the regulation of various aspects of neuronal development and neurotransmission. It exerts its effects through interactions with a range of target proteins one of which is interleukin receptor accessory protein like-1 (IL1RAPL1) protein. Mutations in IL1RAPL1 have recently been associated with autism spectrum disorders and a missense mutation (R102Q) on NCS-1 has been found in one individual with autism. We have examined the effect of this mutation on the structure and function of NCS-1. From use of NMR spectroscopy, it appeared that the R102Q affected the structure of the protein particularly with an increase in the extent of conformational exchange in the C-terminus of the protein. Despite this change NCS-1(R102Q) did not show changes in its affinity for Ca2+ or binding to IL1RAPL1 and its intracellular localisation was unaffected. Assessment of NCS-1 dynamics indicated that it could rapidly cycle between cytosolic and membrane pools and that the cycling onto the plasma membrane was specifically changed in NCS-1(R102Q) with the loss of a Ca2+ -dependent component. From these data we speculate that impairment of the normal cycling of NCS-1 by the R102Q mutation could have subtle effects on neuronal signalling and physiology in the developing and adult brain

    Following the genes: a framework for animal modeling of psychiatric disorders

    Get PDF
    The number of individual cases of psychiatric disorders that can be ascribed to identified, rare, single mutations is increasing with great rapidity. Such mutations can be recapitulated in mice to generate animal models with direct etiological validity. Defining the underlying pathogenic mechanisms will require an experimental and theoretical framework to make the links from mutation to altered behavior in an animal or psychopathology in a human. Here, we discuss key elements of such a framework, including cell type-based phenotyping, developmental trajectories, linking circuit properties at micro and macro scales and definition of neurobiological phenotypes that are directly translatable to humans

    Exploiting bacterial DNA gyrase as a drug target: current state and perspectives

    Get PDF
    DNA gyrase is a type II topoisomerase that can introduce negative supercoils into DNA at the expense of ATP hydrolysis. It is essential in all bacteria but absent from higher eukaryotes, making it an attractive target for antibacterials. The fluoroquinolones are examples of very successful gyrase-targeted drugs, but the rise in bacterial resistance to these agents means that we not only need to seek new compounds, but also new modes of inhibition of this enzyme. We review known gyrase-specific drugs and toxins and assess the prospects for developing new antibacterials targeted to this enzyme

    Phenotypic expansion of the BPTF-related neurodevelopmental disorder with dysmorphic facies and distal limb anomalies

    Get PDF
    Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL), defined primarily by developmental delay/intellectual disability, speech delay, postnatal microcephaly, and dysmorphic features, is a syndrome resulting from heterozygous variants in the dosage-sensitive bromodomain PHD finger chromatin remodeler transcription factor BPTF gene. To date, only 11 individuals with NEDDFL due to de novo BPTF variants have been described. To expand the NEDDFL phenotypic spectrum, we describe the clinical features in 25 novel individuals with 20 distinct, clinically relevant variants in BPTF, including four individuals with inherited changes in BPTF. In addition to the previously described features, individuals in this cohort exhibited mild brain abnormalities, seizures, scoliosis, and a variety of ophthalmologic complications. These results further support the broad and multi-faceted complications due to haploinsufficiency of BPTF.Genetics of disease, diagnosis and treatmen
    corecore