222 research outputs found

    Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus

    Full text link
    © Bos et al. The 14th-18th century pandemic of Yersinia pestis caused devastating disease outbreaks in Europe for almost 400 years. The reasons for plague's persistence and abrupt disappearance in Europe are poorly understood, but could have been due to either the presence of now-extinct plague foci in Europe itself, or successive disease introductions from other locations. Here we present five Y. pestis genomes from one of the last European outbreaks of plague, from 1722 in Marseille, France. The lineage identified has not been found in any extant Y. pestis foci sampled to date, and has its ancestry in strains obtained from victims of the 14th century Black Death. These data suggest the existence of a previously uncharacterized historical plague focus that persisted for at least three centuries. We propose that this disease source may have been responsible for the many resurgences of plague in Europe following the Black Death

    Amyloid as a Depot for the Formulation of Long-Acting Drugs

    Get PDF
    Amyloids are highly organized protein aggregates that are associated with both neurodegenerative diseases such as Alzheimer disease and benign functions like skin pigmentation. Amyloids self-polymerize in a nucleation-dependent manner by recruiting their soluble protein/peptide counterpart and are stable against harsh physical, chemical, and biochemical conditions. These extraordinary properties make amyloids attractive for applications in nanotechnology. Here, we suggest the use of amyloids in the formulation of long-acting drugs. It is our rationale that amyloids have the properties required of a long-acting drug because they are stable depots that guarantee a controlled release of the active peptide drug from the amyloid termini. This concept is tested with a family of short- and long-acting analogs of gonadotropin-releasing hormone (GnRH), and it is shown that amyloids thereof can act as a source for the sustained release of biologically active peptides

    Astrocyte biomarker signatures of amyloid-β and tau pathologies in Alzheimer’s disease

    Get PDF
    Astrocytes can adopt multiple molecular phenotypes in the brain of Alzheimer's disease (AD) patients. Here, we studied the associations of cerebrospinal fluid (CSF) glial fibrillary acidic protein (GFAP) and chitinase-3-like protein 1 (YKL-40) levels with brain amyloid-β (Aβ) and tau pathologies. We assessed 121 individuals across the aging and AD clinical spectrum with positron emission tomography (PET) brain imaging for Aβ ([18F]AZD4694) and tau ([18F]MK-6240), as well as CSF GFAP and YKL-40 measures. We observed that higher CSF GFAP levels were associated with elevated Aβ-PET but not tau-PET load. By contrast, higher CSF YKL-40 levels were associated with elevated tau-PET but not Aβ-PET burden. Structural equation modeling revealed that CSF GFAP and YKL-40 mediate the effects of Aβ and tau, respectively, on hippocampal atrophy, which was further associated with cognitive impairment. Our results suggest the existence of distinct astrocyte biomarker signatures in response to brain Aβ and tau accumulation, which may contribute to our understanding of the complex link between reactive astrogliosis heterogeneity and AD progression

    Reduced CSF turnover and decreased ventricular Aβ42 levels are related

    Get PDF
    International audienceBACKGROUND: The appearance of Aβ42 peptide deposits is admitted to be a key event in the pathogenesis of Alzheimer's disease, although amyloid deposits also occur in aged non-demented subjects. Aβ42 is a degradation product of the amyloid protein precursor (APP). It can be catabolized by several enzymes, reabsorbed by capillaries or cleared into cerebrospinal fluid (CSF). The possible involvement of a decrease in CSF turnover in A4β2 deposit formation is up to now poorly known. We therefore investigated a possible relationship between a reduced CSF turnover and the CSF levels of the A4β2 peptide.To this aim, CSF of 31 patients with decreased CSF turnover were studied. These patients presented chronic hydrocephalus communicating or obstructive, which required surgery (ventriculostomy or ventriculo-peritoneal shunt). Nine subjects had idiopathic normal pressure hydrocephalus (iNPH), and the other 22 chronic hydrocephalus from other origins (oCH).The Aβ42 peptide concentration was measured by an ELISA test in 31 ventricular CSF samples and in 5 lumbar CSF samples from patients with communicating hydrocephalus. RESULTS: The 5 patients with lumbar CSF analysis had similar levels of lumbar and ventricular Aβ42. A significant reduction in Aβ42 ventricular levels was observed in 24 / 31 patients with hydrocephalus. The values were lower than 300 pg/ml in 5 out of 9 subjects with iNPH, and in 15 out of 22 subjects with oCH. CONCLUSION: The decrease of CSF Aβ42 seems to occur independently of the surgical hydrocephalus aetiology. This suggests that a CSF reduced turnover may play an important role in the decrease of CSF Aβ42 concentration

    Network Analysis of Intrinsic Functional Brain Connectivity in Alzheimer's Disease

    Get PDF
    Functional brain networks detected in task-free (“resting-state”) functional magnetic resonance imaging (fMRI) have a small-world architecture that reflects a robust functional organization of the brain. Here, we examined whether this functional organization is disrupted in Alzheimer's disease (AD). Task-free fMRI data from 21 AD subjects and 18 age-matched controls were obtained. Wavelet analysis was applied to the fMRI data to compute frequency-dependent correlation matrices. Correlation matrices were thresholded to create 90-node undirected-graphs of functional brain networks. Small-world metrics (characteristic path length and clustering coefficient) were computed using graph analytical methods. In the low frequency interval 0.01 to 0.05 Hz, functional brain networks in controls showed small-world organization of brain activity, characterized by a high clustering coefficient and a low characteristic path length. In contrast, functional brain networks in AD showed loss of small-world properties, characterized by a significantly lower clustering coefficient (p<0.01), indicative of disrupted local connectivity. Clustering coefficients for the left and right hippocampus were significantly lower (p<0.01) in the AD group compared to the control group. Furthermore, the clustering coefficient distinguished AD participants from the controls with a sensitivity of 72% and specificity of 78%. Our study provides new evidence that there is disrupted organization of functional brain networks in AD. Small-world metrics can characterize the functional organization of the brain in AD, and our findings further suggest that these network measures may be useful as an imaging-based biomarker to distinguish AD from healthy aging

    Towards a Pharmacophore for Amyloid

    Get PDF
    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of β-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases

    Subcortical amyloid load is associated with shape and volume in cognitively normal individuals

    Full text link
    Amyloid-beta (Aβ) deposition is one of the main hallmarks of Alzheimer’s disease. The study assessed the associations between cortical and subcortical 11C-Pittsburgh Compound B retention, namely in the hippocampus, amygdala, putamen, caudate, pallidum, and thalamus, and subcortical morphology in cognitively normal individuals. We recruited 104 cognitive normal individuals who underwent extensive neuropsychological assessment, PiB-positron emission tomography (PET) scan and 3-tesla magnetic resonance imaging (MRI) acquisition of T1-weighted images. Global, cortical, and subcortical regional PiB retention values were derived from each scan and subcortical morphology analyses were performed to investigate vertex-wise local surface and global volumes, including the hippocampal subfields volumes. We found that subcortical regional Aβ was associated with the surface of the hippocampus, thalamus, and pallidum, with changes being due to volume and shape. Hippocampal Aβ was marginally associated with volume of the whole hippocampus as well as with the CA1 subfield, subiculum, and molecular layer. Participants showing higher subcortical Aβ also showed worse cognitive performance and smaller hippocampal volumes. In contrast, global and cortical PiB uptake did not associate with any subcortical metrics. This study shows that subcortical Aβ is associated with subcortical surface morphology in cognitively normal individuals. This study highlights the importance of quantifying subcortical regional PiB retention values in these individuals

    Loss of Metal Ions, Disulfide Reduction and Mutations Related to Familial ALS Promote Formation of Amyloid-Like Aggregates from Superoxide Dismutase

    Get PDF
    Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (FALS). Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1) formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1
    corecore