107 research outputs found

    Pearling: stroke segmentation with crusted pearl strings

    Get PDF
    We introduce a novel segmentation technique, called Pearling, for the semi-automatic extraction of idealized models of networks of strokes (variable width curves) in images. These networks may for example represent roads in an aerial photograph, vessels in a medical scan, or strokes in a drawing. The operator seeds the process by selecting representative areas of good (stroke interior) and bad colors. Then, the operator may either provide a rough trace through a particular path in the stroke graph or simply pick a starting point (seed) on a stroke and a direction of growth. Pearling computes in realtime the centerlines of the strokes, the bifurcations, and the thickness function along each stroke, hence producing a purified medial axis transform of a desired portion of the stroke graph. No prior segmentation or thresholding is required. Simple gestures may be used to trim or extend the selection or to add branches. The realtime performance and reliability of Pearling results from a novel disk-sampling approach, which traces the strokes by optimizing the positions and radii of a discrete series of disks (pearls) along the stroke. A continuous model is defined through subdivision. By design, the idealized pearl string model is slightly wider than necessary to ensure that it contains the stroke boundary. A narrower core model that fits inside the stroke is computed simultaneously. The difference between the pearl string and its core contains the boundary of the stroke and may be used to capture, compress, visualize, or analyze the raw image data along the stroke boundary

    Intracellular mGluR5 plays a critical role in neuropathic pain

    Get PDF
    Spinal mGluR5 is a key mediator of neuroplasticity underlying persistent pain. Although brain mGluR5 is localized on cell surface and intracellular membranes, neither the presence nor physiological role of spinal intracellular mGluR5 is established. Here we show that in spinal dorsal horn neurons >80% of mGluR5 is intracellular, of which ∼60% is located on nuclear membranes, where activation leads to sustained Ca(2+) responses. Nerve injury inducing nociceptive hypersensitivity also increases the expression of nuclear mGluR5 and receptor-mediated phosphorylated-ERK1/2, Arc/Arg3.1 and c-fos. Spinal blockade of intracellular mGluR5 reduces neuropathic pain behaviours and signalling molecules, whereas blockade of cell-surface mGluR5 has little effect. Decreasing intracellular glutamate via blocking EAAT-3, mimics the effects of intracellular mGluR5 antagonism. These findings show a direct link between an intracellular GPCR and behavioural expression in vivo. Blockade of intracellular mGluR5 represents a new strategy for the development of effective therapies for persistent pain

    Rational Symplectic Field Theory for Legendrian knots

    Full text link
    We construct a combinatorial invariant of Legendrian knots in standard contact three-space. This invariant, which encodes rational relative Symplectic Field Theory and extends contact homology, counts holomorphic disks with an arbitrary number of positive punctures. The construction uses ideas from string topology.Comment: 58 pages, many figures; v3: minor corrections; final version, to appear in Inventiones Mathematica

    No cross-interactions among different tensor fields with the mixed symmetry (3,1) intermediated by a vector field

    Full text link
    Under the hypotheses of analyticity in the coupling constant, locality, Lorentz covariance, and Poincare invariance of the deformations, combined with the preservation of the number of derivatives on each field, the consistent interactions between a collection of free massless tensor gauge fields with the mixed symmetry of a two-column Young diagram of the type (3,1) and one Abelian vector field, respectively a pp-form gauge field, are addressed. The main result is that a single mixed symmetry tensor field from the collection gets coupled to the vector field/pp-form. Our final result resembles to the well known fact from General Relativity according to which there is one graviton in a given world.Comment: 19 page

    280 one-opposition near-Earth asteroids recovered by the EURONEAR with the <i>Isaac Newton</i> Telescope

    Get PDF
    Context. One-opposition near-Earth asteroids (NEAs) are growing in number, and they must be recovered to prevent loss and mismatch risk, and to improve their orbits, as they are likely to be too faint for detection in shallow surveys at future apparitions. Aims. We aimed to recover more than half of the one-opposition NEAs recommended for observations by the Minor Planet Center (MPC) using the Isaac Newton Telescope (INT) in soft-override mode and some fractions of available D-nights. During about 130 h in total between 2013 and 2016, we targeted 368 NEAs, among which 56 potentially hazardous asteroids (PHAs), observing 437 INT Wide Field Camera (WFC) fields and recovering 280 NEAs (76% of all targets). Methods. Engaging a core team of about ten students and amateurs, we used the THELI, Astrometrica, and the Find_Orb software to identify all moving objects using the blink and track-and-stack method for the faintest targets and plotting the positional uncertainty ellipse from NEODyS. Results. Most targets and recovered objects had apparent magnitudes centered around V ~ 22.8 mag, with some becoming as faint as V ~ 24 mag. One hundred and three objects (representing 28% of all targets) were recovered by EURONEAR alone by Aug. 2017. Orbital arcs were prolonged typically from a few weeks to a few years; our oldest recoveries reach 16 years. The O−C residuals for our 1854 NEA astrometric positions show that most measurements cluster closely around the origin. In addition to the recovered NEAs, 22 000 positions of about 3500 known minor planets and another 10 000 observations of about 1500 unknown objects (mostly main-belt objects) were promptly reported to the MPC by our team. Four new NEAs were discovered serendipitously in the analyzed fields and were promptly secured with the INT and other telescopes, while two more NEAs were lost due to extremely fast motion and lack of rapid follow-up time. They increase the counting to nine NEAs discovered by the EURONEAR in 2014 and 2015. Conclusions. Targeted projects to recover one-opposition NEAs are efficient in override access, especially using at least two-meter class and preferably larger field telescopes located in good sites, which appear even more efficient than the existing surveys

    Homological Mirror Symmetry for Calabi-Yau hypersurfaces in projective space

    Full text link
    We prove Homological Mirror Symmetry for a smooth d-dimensional Calabi-Yau hypersurface in projective space, for any d > 2 (for example, d = 3 is the quintic three-fold). The main techniques involved in the proof are: the construction of an immersed Lagrangian sphere in the `d-dimensional pair of pants'; the introduction of the `relative Fukaya category', and an understanding of its grading structure; a description of the behaviour of this category with respect to branched covers (via an `orbifold' Fukaya category); a Morse-Bott model for the relative Fukaya category that allows one to make explicit computations; and the introduction of certain graded categories of matrix factorizations mirror to the relative Fukaya category.Comment: 133 pages, 17 figures. Changes to the argument ruling out sphere bubbling in the relative Fukaya category, and dealing with the behaviour of the symplectic form under branched covers. Other minor changes suggested by the referee. List of notation include
    corecore