1,591 research outputs found
A model of non-perturbative gluon emission in an initial state parton shower
We consider a model of transverse momentum production in which
non-perturbative smearing takes place throughout the perturbative evolution, by
a simple modification to an initial state parton shower algorithm. Using this
as the important non-perturbative ingredient, we get a good fit to data over a
wide range of energy. Combining it with the non-perturbative masses and cutoffs
that are a feature of conventional parton showers also leads to a reasonable
fit. We discuss the extrapolation to the LHC.Comment: 14 pages, 6 figures; version accepted by JHE
The Hot Bang state of massless fermions
In 2002, a method has been proposed by Buchholz et al. in the context of
Local Quantum Physics, to characterize states that are locally in thermodynamic
equilibrium. It could be shown for the model of massless bosons that these
states exhibit quite interesting properties. The mean phase-space density
satisfies a transport equation, and many of these states break time reversal
symmetry. Moreover, an explicit example of such a state, called the Hot Bang
state, could be found, which models the future of a temperature singularity.
However, although the general results carry over to the fermionic case easily,
the proof of existence of an analogue of the Hot Bang state is not quite that
straightforward. The proof will be given in this paper. Moreover, we will
discuss some of the mathematical subtleties which arise in the fermionic case.Comment: 17 page
Eddy-Current Probe Design
This paper describes theoretical and experimental work directed toward finding the optimum probe dimensions and operating frequency for eddy current detection of half-penny surface cracks in nonmagnetic conducting materials. The study applies to probes which excite an approximately uniform spatial field over the length of the crack at the surface of the material. In practical terms, this means that the probe is not smaller than the crack length in any of its critical dimensions
Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms
The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
Stable propagation of an ordered array of cracks during directional drying
We study the appearance and evolution of an array of parallel cracks in a
thin slab of material that is directionally dried, and show that the cracks
penetrate the material uniformly if the drying front is sufficiently sharp. We
also show that cracks have a tendency to become evenly spaced during the
penetration. The typical distance between cracks is mainly governed by the
typical distance of the pattern at the surface, and it is not modified during
the penetration. Our results agree with recent experimental work, and can be
extended to three dimensions to describe the properties of columnar polygonal
patterns observed in some geological formations.Comment: 8 pages, 4 figures, to appear in PR
Multiple sequence alignment based on set covers
We introduce a new heuristic for the multiple alignment of a set of
sequences. The heuristic is based on a set cover of the residue alphabet of the
sequences, and also on the determination of a significant set of blocks
comprising subsequences of the sequences to be aligned. These blocks are
obtained with the aid of a new data structure, called a suffix-set tree, which
is constructed from the input sequences with the guidance of the
residue-alphabet set cover and generalizes the well-known suffix tree of the
sequence set. We provide performance results on selected BAliBASE amino-acid
sequences and compare them with those yielded by some prominent approaches
NLO QCD corrections in Herwig++ with MC@NLO
We present the calculations necessary to obtain next-to-leading order QCD
precision with the Herwig++ event generator using the MC@NLO approach, and
implement them for all the processes that were previously available from
Fortran HERWIG with MC@NLO. We show a range of results comparing the two
implementations. With these calculations and recent developments in the
automatic generation of NLO matrix elements, it will be possible to obtain NLO
precision with Herwig++ for a much wider range of processesComment: 26 pages, 28 figure
Sedimentological evidence for pronounced glacial‐interglacial climate fluctuations in NE Tibet in the latest Pliocene to early Pleistocene
The intensification of Northern Hemisphere glaciation (iNHG) and uplift of the Tibetan Plateau have been argued to be among the main drivers of climate change in midlatitude Central Asia during the Pliocene/Pleistocene. While most proxy records that support this hypothesis are from regions outside the Tibetan Plateau (such as from the Chinese Loess Plateau), detailed paleoclimatic information for the plateau itself during that time has yet remained elusive. Here we present a temporally highly resolved (~500 years) sedimentological record from the Qaidam Basin situated on the northeastern Tibetan Plateau that shows pronounced glacial‐interglacial climate variability during the interval from 2.7 to 2.1 Ma. Glacial (interglacial) intervals are generally characterized by coarser (finer) grain size, minima (maxima) in organic matter content, and maxima (minima) in carbonate content. Comparison of our results with Earth's orbital parameters and proxy records from the Chinese Loess Plateau suggests that the observed climate fluctuations were mainly driven by changes in the Siberian High/East Asian winter monsoon system as a response to the iNHG. They are further proposed to be enhanced by the topography of the Tibetan Plateau and its impact on the position and intensity of the westerlies
HERWIG 6.4 Release Note
A new release of the Monte Carlo program HERWIG (version 6.4) is now
available. The main new features are: spin correlations between the production
and decay of heavy fermions, i.e. top quarks, tau leptons and SUSY particles;
polarization effects in SUSY production processes in lepton-lepton collisions;
an interface to TAUOLA for tau decays; MSSM Higgs processes in lepton-lepton
collisions
Herwig++ 2.1 Release Note
A new release of the Monte Carlo program Herwig++ (version 2.1) is now available. This version includes a number of significant improvements including: an eikonal multiple parton-parton scattering model of the underlying event; the inclusion of Beyond the Standard Model (BSM) physics; and a new hadronic decay model tuned to LEP data. This version of the program is now fully ready for the simulation of events in hadron-hadron collisions
- …