15,761 research outputs found

    Ducks on the torus: existence and uniqueness

    Full text link
    We show that there exist generic slow-fast systems with only one (time-scaling) parameter on the two-torus, which have canard cycles for arbitrary small values of this parameter. This is in drastic contrast with the planar case, where canards usually occur in two-parametric families. Here we treat systems with a convex slow curve. In this case there is a set of parameter values accumulating to zero for which the system has exactly one attracting and one repelling canard cycle. The basin of the attracting cycle is almost the whole torus.Comment: To appear in Journal of Dynamical and Control Systems, presumably Vol. 16 (2010), No. 2; The final publication is available at www.springerlink.co

    Constraining Light Colored Particles with Event Shapes

    Get PDF
    Using recently developed techniques for computing event shapes with Soft-Collinear Effective Theory, LEP event shape data is used to derive strong model-independent bounds on new colored particles. In the effective field theory computation, colored particles contribute in loops not only to the running of alpha_s but also to the running of hard, jet and soft functions. Moreover, the differential distribution in the effective theory explicitly probes many energy scales, so event shapes have strong sensitivity to new particle thresholds. Using thrust data from ALEPH and OPAL, colored adjoint fermions (such as a gluino) below 51.0 GeV are ruled out to 95% confidence level. This is nearly an order-of-magnitude improvement over the previous model-independent bound of 6.3 GeV.Comment: 4 pages, 2 figure

    High-order Discretization of a Gyrokinetic Vlasov Model in Edge Plasma Geometry

    Full text link
    We present a high-order spatial discretization of a continuum gyrokinetic Vlasov model in axisymmetric tokamak edge plasma geometries. Such models describe the phase space advection of plasma species distribution functions in the absence of collisions. The gyrokinetic model is posed in a four-dimensional phase space, upon which a grid is imposed when discretized. To mitigate the computational cost associated with high-dimensional grids, we employ a high-order discretization to reduce the grid size needed to achieve a given level of accuracy relative to lower-order methods. Strong anisotropy induced by the magnetic field motivates the use of mapped coordinate grids aligned with magnetic flux surfaces. The natural partitioning of the edge geometry by the separatrix between the closed and open field line regions leads to the consideration of multiple mapped blocks, in what is known as a mapped multiblock (MMB) approach. We describe the specialization of a more general formalism that we have developed for the construction of high-order, finite-volume discretizations on MMB grids, yielding the accurate evaluation of the gyrokinetic Vlasov operator, the metric factors resulting from the MMB coordinate mappings, and the interaction of blocks at adjacent boundaries. Our conservative formulation of the gyrokinetic Vlasov model incorporates the fact that the phase space velocity has zero divergence, which must be preserved discretely to avoid truncation error accumulation. We describe an approach for the discrete evaluation of the gyrokinetic phase space velocity that preserves the divergence-free property to machine precision

    RHESSI and SOHO/CDS Observations of Explosive Chromospheric Evaporation

    Full text link
    Simultaneous observations of explosive chromospheric evaporation are presented using data from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Coronal Diagnostic Spectrometer (CDS) onboard SOHO. For the first time, co-spatial imaging and spectroscopy have been used to observe explosive evaporation within a hard X-ray emitting region. RHESSI X-ray images and spectra were used to determine the flux of non-thermal electrons accelerated during the impulsive phase of an M2.2 flare. Assuming a thick-target model, the injected electron spectrum was found to have a spectral index of ~7.3, a low energy cut-off of ~20 keV, and a resulting flux of >4x10^10 ergs cm^-2 s^-1. The dynamic response of the atmosphere was determined using CDS spectra, finding a mean upflow velocity of 230+/-38 km s^-1 in Fe XIX (592.23A), and associated downflows of 36+/-16 km s^-1 and 43+/-22 km s^-1 at chromospheric and transition region temperatures, respectively, relative to an averaged quiet-Sun spectra. The errors represent a 1 sigma dispersion. The properties of the accelerated electron spectrum and the corresponding evaporative velocities were found to be consistent with the predictions of theory.Comment: 5 pages, 4 figures, ApJL (In Press

    First detection of acceleration and deceleration in protostellar Jets? Time variability in the Chamaeleontis II outflows

    Get PDF
    Context. Kinematical and time variability studies of protostellar jets are fundamental for understanding the dynamics and the physics of these objects. Such studies remain very sporadic, since they require long baselines before they can be accomplished. Alms. We present for the first time a multi-epoch (20 years baseline) kinematical investigation of HH 52, 53, and 54 at optical and near-IR wavelengths, along with medium (optical) and high resolution (NIR) spectroscopic analyses, probing the kinematical and physical time variability conditions of the gas along the flows. Methods. By means of multi-epoch and multi-wavelength narrow-band images, we derived proper motions (PMs), tangential velocities, velocity and flux variability of the knots. Radial velocities and physical parameters of the gas were derived from spectroscopy. Finally, spatial velocities and inclination of the flows were obtained by combining both imaging and spectroscopy. Results. The PM analysis reveals three distinct, partially overlapping outflows. Spatial velocities of the knots vary from 50 km s -1 to 120 km s-1. The inclinations of the three flows are 58 ± 3°, 84 ± 2°, and 67 ± 3° (HH 52, HH 53, and HH 54 flows, respectively). In 20 years, about 60% of the observed knots show some degree of flux variability. Our set of observations apparently indicates acceleration and deceleration in a variety of knots along the jets. For about 20% of the knots, mostly coincident with working surfaces or interacting knots along the flows, a relevant variability in both flux and velocity is observed. We argue that both variabilities are related and that all or part of the kinetic energy lost by the interacting knots is successively radiated. The physical parameters derived from the diagnostics are quite homogeneous along and among the three outflows. The analysis indicates the presence of very light (NH � 103 cm-3), ionised (Te,. � 0.2-0.6), and hot (Te � 14000-26000 K) flows, impacting a denser medium. Several knots are deflected, especially in the HH 52 flow. At least for a couple of them (HH 54 G and GO), the deflection originates from the collision of the two. For the more massive parts of the flow, the deflection is likely the result of the flow collision with a dense cloud or with clumps. Finally, we discuss the possible driving sources of the flows. ©ESO 2009

    Diffractive triangulation of radiative point sources

    Get PDF
    We describe a general method to determine the location of a point source of waves relative to a twodimensional single-crystalline active pixel detector. Based on the inherent structural sensitivity of crystalline sensor materials, characteristic detector diffraction patterns can be used to triangulate the location of a wave emitter. The principle described here can be applied to various types of waves, provided that the detector elements are suitably structured. As a prototypical practical application of the general detection principle, a digital hybrid pixel detector is used to localize a source of electrons for Kikuchi diffraction pattern measurements in the scanning electron microscope. This approach provides a promising alternative method to calibrate Kikuchi patterns for accurate measurements of microstructural crystal orientations, strains, and phase distributions

    Accuracy of one-dimensional collision integral in the rigid spheres approximation

    Get PDF
    The accuracy of calculation of spectral line shapes in one-dimensional approximation is studied analytically in several limiting cases for arbitrary collision kernel and numerically in the rigid spheres model. It is shown that the deviation of the line profile is maximal in the center of the line in case of large perturber mass and intermediate values of collision frequency. For moderate masses of buffer molecules the error of one-dimensional approximation is found not to exceed 5%.Comment: LaTeX, 24 pages, 8 figure

    Postural Changes in Blood Pressure Associated with Interactions between Candidate Genes for Chronic Respiratory Diseases and Exposure to Particulate Matter

    Get PDF
    BACKGROUND. Fine particulate matter [aerodynamic diameter ≤ 2.5 μm (PM2.5)] has been associated with autonomic dysregulation. OBJECTIVE. We hypothesized that PM2.5 influences postural changes in systolic blood pressure (ΔSBP) and in diastolic blood pressure (ΔDBP) and that this effect is modified by genes thought to be related to chronic lung disease. METHODS. We measured blood pressure in participants every 3-5 years. ΔSBP and ΔDBP were calculated as sitting minus standing SBP and DBP. We averaged PM2.5 over 48 hr before study visits and analyzed 202 single nucleotide polymorphisms (SNPs) in 25 genes. To address multiple comparisons, data were stratified into a split sample. In the discovery cohort, the effects of SNP x PM2.5 interactions on ΔSBP and ΔDBP were analyzed using mixed models with subject-specific random intercepts. We defined positive outcomes as p < 0.1 for the interaction; we analyzed only these SNPs in the replicate cohort and confirmed them if p < 0.025 with the same sign. Confirmed associations were analyzed within the full cohort in models adjusted for anthropometric and lifestyle factors. RESULTS. Nine hundred forty-five participants were included in our analysis. One interaction with rs9568232 in PHD finger protein 11 (PHF11) was associated with greater ΔDBP. Interactions with rs1144393 in matrix metalloprotease 1 (MMP1) and rs16930692, rs7955200, and rs10771283 in inositol 1,4,5-triphosphate receptor, type 2 (ITPR2) were associated with significantly greater ΔSBP. Because SNPs associated with ΔSBP in our analysis are in genes along the renin-angiotensin pathway, we then examined medications affecting that pathway and observed significant interactions for angiotensin receptor blockers but not angiotensin-converting enzyme inhibitors with PM2.5. CONCLUSIONS. PM2.5 influences blood pressure and autonomic function. This effect is modified by genes and drugs that also act along this pathway.National Institute of Environmental Health Sciences (T32 ES07069, ES0002, ES015172-01, ES014663, P01 ES09825); United States Environmental Protection Agency (R827353, R832416); National Institutes of Health/National Institute of Aging (AG027014); United States Department of Veterans Affairs; Massachusetts Veterans Epidemiology Research and Information Cente
    • …
    corecore