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Constraining Light Colored Particles with Event Shapes

David E. Kaplan and Matthew D. Schwartz
Department of Physics and Astronomy Johns Hopkins University Baltimore, MD 21218, U.S.A.

Using recently developed techniques for computing event shapes with Soft-Collinear Effective
Theory, lep event shape data is used to derive strong model-independent bounds on new colored
particles. In the effective field theory computation, colored particles contribute in loops not only to
the running of αs but also to the running of hard, jet and soft functions. Moreover, the differential
distribution in the effective theory explicitly probes many energy scales, so event shapes have strong
sensitivity to new particle thresholds. Using thrust data from aleph and opal, colored adjoint
fermions (such as a gluino) below 51.0 GeV are ruled out to 95% confidence. This is nearly an
order-of-magnitude improvement over the previous model-independent bound of 6.3 GeV.

Despite the fact that particle physics experiments have
been running at and above 91 GeV center of mass ener-
gies for over two decades, it is not known if the standard
model represents the complete particle content below this
scale. For particles which carry no standard model quan-
tum numbers, the only hope of producing them at col-
liders is through the Higgs, if there is a Higgs, and if
they couple to it, or indirectly through off-shell inter-
mediate states. But surprisingly, even colored particles,
which interact with the strong force, are not significantly
constrained. As long as they have small or vanishing cou-
plings to electroweak gauge bosons, current data allows
mass ranges well below the weak scale. A good example
is a color adjoint Majorana fermion, such as the gluino
in supersymmetric theories.

The gluino is a color octet and thus should have a
large production cross section at hadron colliders, a non-
negligible contribution to four-jet events at lep, and a
significant effect on the running of αs. Most of the cur-
rent bounds on a color octet fermion depend on how it
hadronizes and how it decays. For example,

• If the gluino decays to two quarks and a very light
neutralino, hadron collider data rules it out up to
308 GeV at 95% confidence level (C.L.) [1]. A re-
cent study has shown that the Tevatron could probe
gluino masses up to 150 GeV in the same decay
channel independent of the neutralino mass [2].

• If the gluino is stable on detector lifetimes, aleph

has excluded masses lighter than 26.9 GeV [3].

• A bound of 12 GeV, for a fixed αs(mZ) = 0.118,
has been set based on the gluino’s potential contri-
bution to the parton distribution functions [4]. A
strict lower bound (i.e., independent of αs) has not
been set.

As for a model independent limit, aleph [5] performed
an analysis on four-jet observables as a measurement of
the strong coupling constant and QCD color factors. The
analysis found a good fit to QCD and ruled out gluinos
below 6.3 GeV at 95% C.L.. An independent study [6],
which included the use of electroweak precision data, ar-
rived at the same lower limit. In both cases, the bound

comes essentially from the cross section for qq̄g̃g̃ produc-
tion which is very sensitive to the gluino mass at lep

1 energies. The scale 6.3 GeV is where these searches
lose sensitivity and can be taken as the current model-
independent bound on the gluino mass.

Besides real production, new colored particles can be
seen indirectly by their virtual effects. For example,
any particle with color will contribute to the running of
αs. Some of the current model-independent bounds come
from fitting the 1-loop β-function coefficient – which is
sensitive to the number of flavors, nf – to values of αs

measured at different energies. For example, delphi

has done a study of mean values of event shapes and
other inclusive observables leading to nf = 4.7±1.2 (and
nf = 4.75 ± 0.44 when combined with low energy thrust
data) and ruling out gluinos less than 5 GeV. This study
includes data from 14 to 200 GeV. However, by averaging
the observables – for example, into the mean thrust T (Q)
– this approach is not optimized to take full advantage
of the available data.

A nominally positive feature of totally inclusive ob-
servables, such as T (Q), is that only one scale appears,
so the perturbation series in αs cannot be spoiled by the
appearance of large logarithms. However, in searching for
new particles through radiative corrections it is precisely
these logarithms which have the most valuable informa-
tion. In order to trust a differential calculation where the
logarithms are relevant, the logs must be resummed. For
many years resummation of event shapes was only avail-
able at next-to-leading order [7], which was insufficient
to provide strong bounds on new physics because of large
theoretical uncertainties. Recently, however, the thrust
distribution was resummed to next-to-next-to-next-to-
leading logarithmic order using techniques of effective
field theory [8]. Including matching to recent next-to-
next-to-leading fixed-order (NNLO) event shapes [9], the
theoretical uncertainty on the αs extraction from lep

was finally reduced to be sub-dominant to other uncer-
tainties for the first time. Moreover, besides reducing the
uncertainty, the effective theory approach makes explicit
that αs is probed at many scales and so the sensitivity
to new physics should be strong. Thus, it is natural to
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try to improve the model-independent bounds on new
colored states using these recent theoretical advances. In
this letter, we use these insights to improve the model-
independent bound on the gluino by nearly an order of
magnitude.

The thrust distribution was shown in [8, 10] to have
the form

R(τ) =
1

σhad

∫ τ

0

dσ

dτ ′
dτ ′ =

1

σhad

[R2(τ) + r(τ)] (1)

where τ ≡ 1−T . Here, the matching function r(τ) is de-
fined as the difference between the fixed-order thrust dis-
tribution and the fixed-order expansion of the resummed
distribution. We use r(τ) at next-to-next-to-leading or-
der, i.e. to α3

s.
The function R2(τ) in Eq.(1) is the resummed distribu-

tion. It can be calculated using Soft-Collinear Effective
Theory [11, 12, 13] with insights from from [14, 15, 16,
17, 18, 19]. The result is [8]:

R2(τ) = exp [4S(µh, µ) − 2AH(µh, µ) − 8S(µj, µ)

+4AJ(µj , µ) + 4S(µs, µ) + 2AS(µs, µ)]

× H(Q, µh)
[
j̃(∂η, µj)

]2

s̃T (∂η, µs)

[
e−γEη

Γ(η + 1)

]
. (2)

The derivatives in Eq. (2) are to be taken analytically and
then η set to its canonical value η = 4AΓ(µj , µs). Here,

H(Q, µ) is the hard function and j̃(L, µ) and s̃(L, µ) are
the Laplace transforms of the jet and soft functions; all of
these have power series expansions. S(ν, µ) and AX(ν, µ)
are auxiliary functions defined as integrals over various
anomalous dimensions. Explicit expressions for these
functions can be found in [8]. The scale µ in Eq.(2) is ar-
bitrary and the distribution is formally independent of it,
but different values of µ can be chosen for calculational
convenience.

The formula (2) is a simplified version of the one in [8],
valid when the scales are set to their canonical values:

µh = Q, µj = Q
√

τ, µs = Qτ (3)

As mentioned above, a calculation of mean thrust, or a
fixed-order calculation of differential thrust, would only
probe αs(Q) at a single scale, the hard scale µh = Q.
But the differential thrust distribution probes even lower
scales. For example, in the two-jet limit thrust reduces
to the sum of hemisphere masses, Q2τ ∼ M2

L + M2

R.
The effective theory expression associates this mass scale
with the scale of jet functions, and probes it through
µj ∼ Q

√
τ . Actually, the effective theory makes it ap-

parent that even lower scales, associated with soft modes
of QCD, are relevant. These are probed by the soft scale
µs ∼ µ2

j/µh ∼ Qτ , which is a type of seesaw scale lower
than both of the physical external scales Q and Q

√
τ [10].

Since αs is larger at lower energy, resumming logs of the

soft scale is critical to generating an accurate thrust dis-
tribution.

Because the differential thrust distribution is sensitive
to many scales, it would be sensitive to the presence of
new colored particles with a variety of masses. These new
states would affect the running of αs, through the QCD
beta function, as well as the hard, jet, soft anomalous
dimensions – which appear implicitly in (2) – and the

fixed-order hard, jet, and soft functions, H, j̃ and s̃.

Throughout the following we modify the standard
model by adding ∆nf new flavors of mass m at a thresh-
old scale µth. For example, a new massive quark cor-
responds to ∆nf = 1 and a gluino to ∆nf = 3 [20].
Below the scale µth, the new flavors are integrated out,
insuring decoupling as m → ∞. This will, in general, in-
duce discontinuities in αs(µ) and in the hard, jet and soft
functions, all of which are unphysical by themselves. The
resulting thrust distribution, however, must be smooth.
In fact, one can show that the effective field theory dis-
tribution is independent of µth order-by-order in pertur-
bation theory [21]. For simplicity, we take µth = m and
match αs at one-loop. To avoid having to run the jet and
soft functions through the threshold, we choose µ = m in
Eq.(2) when µs < m < µj . For m < µs, we take µ = µs

and for m > µj we take µ = µj .

To demonstrate the sensitivity to new states, we be-
gin by looking at a single data set, the aleph data from
lep 1 at 91.2 GeV [22]. We perform a bin-by-bin correc-
tion for hadronization and quark masses using pythia

v.6.409 [23]. Using the fit region 0.10 ≤ τ ≤ 0.24 the
soft scale µs probes 9 - 22 GeV and the jet scale µj probes
29 - 45 GeV. Thus, if there are nf flavors below 9 GeV,
we do not have to worry about an explicit threshold and
may simply run αs and the other objects using this value
of nf throughout (a more refined procedure is described
below). To derive a bound on the number of light flavors,
we perform a least-squares fit to the experimental data.
For the errors used in the fit, we include both the ex-
perimental statistical uncertainty and also the statistical
uncertainty in the fixed-order thrust distribution. The
fixed-order result was calculated numerically, with some-
what slow convergence at NNLO, and to be conservative
we rescale the NNLO uncertainties by a factor of 1.5 to
account for the fact that the errors may have been un-
derestimated. A combined fit with two free parameters
gives αs(mZ) = 0.1169 ± 0.0004 and nf = 5.32 ± 0.59,
where the errors are statistical only.

For a second example, using the same lep 1 data set,
we note that a gluino of mass m = 25 GeV lies outside the
range of scales probed by the hard, jet, and soft functions.
Thus, it can be modeled by taking ∆nf = 3 for the hard
and jet functions, and ∆nf = 0 for the soft function.
Performing the fit with these values, we find χ2 = 31.7
with the gluino compared to χ2 = 11.9 for the standard
model, with 13 degrees of freedom. The fits for the two
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FIG. 1: Theoretical prediction versus aleph data at lep 1
for the standard model and the standard model with a 25
GeV gluino. The total statistical uncertainty band includes
theoretical statistical uncertainty from the Monte Carlo used
to generate the NNLO fixed-order thrust distribution.

models are shown in Figure 1, where it is clear that the
model with the gluino is systematically worse.

To properly scan over masses, we must specify how
to handle the thresholds. First, consider the total
hadronic cross section, σhad. The exact leading or-
der dependence of σhad on the new particle mass can
be extracted from [28]. For m < µ, the contribution
to the total cross section is proportional to ∆σhad =

α2
s(µ)

(
ρV (m2

Q2 ) + ρR(m2

Q2 ) + 1

4
log(m2

µ2 )
)
, where ρV is the

virtual contribution which vanishes at m = ∞ and ρR

is the real emission contribution which vanishes for m >
Q/2. The explicit log compensates the µ-dependence of
αs and is necessary to have a smooth m → 0 limit. We
will use this exact expression ∆σhad for the new physics
contribution to σhad in Eq. (1), but observe that, as
shown in [28], it is well approximated for 0 < m < Q
by the leading power in m2/Q2. Actually, it is not
clear whether the experiments would have included de-
cay products of real gluinos in their event selection for the
thrust distribution, so in the spirit of providing a model-
independent bound, we allow ∆σhad to scan between 0
and the cross section for ∆nf additional massless fla-
vors. This variation is included in the uncertainty band
described below.

The exact contributions of massive colored states to
the jet, soft, and hard functions are not known, but since
the same loops and real-emission diagrams are relevant
for them as for ∆σhad, it is likely that the result would
be similar to that of ∆σhad. Thus, we assume the leading
power is linear in m2/µ2

h for the hard function, m2/µ2

j for

the jet function, and m2/µ2
s for the soft function. That is,

we take H, j̃ and s̃ to interpolate between the expression
for nf = 5 + ∆nf flavors at m = 0 and nf = 5 flavors
at the relevant threshold. This removes any remaining
discontinuity in the thrust distribution, and should be a
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FIG. 2: Bounds on light colored particles from lep data. The
darker region is completely excluded at 95% confidence. The
lighter region is an uncertainty band including estimates of
various theoretical uncertainties.

good approximation to the (unknown) exact result. In
a similar vein, the matching correction, r(τ) in Eq. (2),
formally takes place at the hard scale Q. However, it
depends on nf and would be discontinuous as m crosses
Q unless the discontinuity is removed by inclusion of ex-
plicit mass corrections. We use an interpolation also lin-
ear in m2/Q2 for this effect. Using this model for the
mass thresholds, in lieu of the exact result, introduces
some theoretical uncertainty. To account for that un-
certainty, we explore some variations of the model and
include the errors in our final bound, as described below.

With this treatment of the threshold effects, the thrust
distribution is smooth and can be compared with the
data for each m and ∆nf . We perform a combined fit to
the aleph [22] and opal [24, 25] data sets from 91.2−206
GeV [26, 27]. The fit regions used are 0.1 < τ < 0.24
for lep 1 , and 0.04 < τ < 0.25 for aleph lep 2 and
0.05 < τ < 0.22 for opal lep 2 . The data are cor-
rected bin-by-bin for hadronization and bottom/charm
mass effects using pythia. We perform a least-squares
fit of the theoretical prediction to the corrected data, us-
ing errors which include both the experimental statistical
errors and the statistical errors of the NNLO fixed-order
calculation, rescaled by 1.5, as described above. For the
standard model, the χ2 is 85.7 for 78 degrees-of-freedom.
For each value of m and ∆nf , we minimize χ2 and com-
pute the maximum likelihood ratio as compared with the
standard model. The resulting 95% C.L. bound is shown
in Figure 2. For ∆nf = 3, the limit is meg > 52.5 GeV.
For a real gluino (with the appropriate group theory fac-
tors differing from ∆nf = 3 at higher orders), the bound
differs by 0.03 GeV.

To account for the theoretical uncertainty, we include
an uncertainty band (the light shaded region in Figure 2).
This subsumes the following variations: (i) Removing
the lowest bins from each data set in the fit. (ii) Not



4

interpolating the total cross-section and matching cor-
rection (we include variations both with nf = 5 and
with nf = 5 + ∆nf in σhad and r(τ)). (iii) Varying pa-
rameters in the hadronization model between pythia’s
default values and the aleph [29] and opal [30] opti-
mized tunings (PARJ(81) = 0.290, 0.292, 0.250 and
PARJ(82)=1.00, 1.57, 1.90). (iv) Using a power cor-
rection proportional to m/µx instead of m2/µ2

x for the
threshold corrections. The band in Figure 2 includes the
maximal and minimal bounds at 95% C.L. for each value
of m and ∆nf . For the gluino, this gives meg > 51.0−54.0
GeV. For our final bound, we take the least restrictive
value, meg > 51.0 GeV.

From Figure 2, it is clear that this method has the
strongest sensitivity in an intermediate mass range, 10
GeV ∼< m ∼< 40 GeV. This range roughly coincides with
the scales probed by the jet and soft functions in the
fit regions of the thrust distributions. For masses below
about 10 GeV, the mass threshold lies outside of the fit
regions and the effect on the event shape can be partially
compensated by a change in αs. When the mass falls
inside the range of the thrust distribution, it is more dif-
ficult to compensate by rescaling αs, hence the stronger
bound. With additional independent constraints on αs,
for example, from the lattice [31] or from τ decays [32],
one might be able to close the light mass window more
tightly. This might, for example, even rule out additional
light colored triplets or scalar adjoints. However, as the
lattice and τ -decay determinations of αs (which take
place at similar scales) are themselves inconsistent by
more than two standard deviations, it is unclear whether
a definitive bound could be obtained in this way. The
main result of this paper is that event shapes alone are
sufficient to exclude light and intermediate mass gluinos
up to 51 GeV, independently of their decays.
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