Simultaneous observations of explosive chromospheric evaporation are
presented using data from the Reuven Ramaty High Energy Solar Spectroscopic
Imager (RHESSI) and the Coronal Diagnostic Spectrometer (CDS) onboard SOHO. For
the first time, co-spatial imaging and spectroscopy have been used to observe
explosive evaporation within a hard X-ray emitting region. RHESSI X-ray images
and spectra were used to determine the flux of non-thermal electrons
accelerated during the impulsive phase of an M2.2 flare. Assuming a
thick-target model, the injected electron spectrum was found to have a spectral
index of ~7.3, a low energy cut-off of ~20 keV, and a resulting flux of
>4x10^10 ergs cm^-2 s^-1. The dynamic response of the atmosphere was determined
using CDS spectra, finding a mean upflow velocity of 230+/-38 km s^-1 in Fe XIX
(592.23A), and associated downflows of 36+/-16 km s^-1 and 43+/-22 km s^-1 at
chromospheric and transition region temperatures, respectively, relative to an
averaged quiet-Sun spectra. The errors represent a 1 sigma dispersion. The
properties of the accelerated electron spectrum and the corresponding
evaporative velocities were found to be consistent with the predictions of
theory.Comment: 5 pages, 4 figures, ApJL (In Press