1,748 research outputs found

    Statics, Dynamics and Manipulations of Bright Matter-Wave Solitons in Optical Lattices

    Get PDF
    Motivated by recent experimental achievement in the work with Bose-Einstein condensates (BECs), we consider bright matter-wave solitons, in the presence of a parabolic magnetic trap and a spatially periodic optical lattice (OL), in the attractive BEC. We examine pinned states of the soliton and their stability by means of perturbation theory. The analytical predictions are found to be in good agreement with numerical simulations. We then explore possibilities to use a time-modulated OL as a means of stopping and trapping a moving soliton, and of transferring an initially stationary soliton to a prescribed position by a moving OL. We also study the emission of radiation from the soliton moving across the combined magnetic trap and OL. We find that the soliton moves freely (without radiation) across a weak lattice, but suffers strong loss for stronger OLs.Comment: 7 pages, 5 figs, Phys Rev A in Press (2005

    Mobility of Discrete Solitons in Quadratically Nonlinear Media

    Get PDF
    We study the mobility of solitons in second-harmonic-generating lattices. Contrary to what is known for their cubic counterparts, discrete quadratic solitons are mobile not only in the one-dimensional (1D) setting, but also in two dimensions (2D). We identify parametric regions where an initial kick applied to a soliton leads to three possible outcomes, namely, staying put, persistent motion, or destruction. For the 2D lattice, it is found that, for the solitary waves, the direction along which they can sustain the largest kick and can attain the largest speed is the diagonal. Basic dynamical properties of the discrete solitons are also discussed in the context of an analytical approximation, in terms of an effective Peierls-Nabarro potential in the lattice setting.Comment: 4 page

    Flavonoides presentes en extractos hexánicos de especies del género Sideritis

    Get PDF
    In continuation to the studies of the Genus Sideritis that this Pharmacology Department has done, we have isolated and identificated the flavonoid compounds in the hexanic extracts of ten species of this Genus by an HPLC method. We have to remark the presence of Isoscutellarein-7-0-(allosyl-glucoside), in all the studied extracts.Continuando con los trabajos llevados a cabo en el Dep. de Farmacología, sobre el género Sideri tis, hemos separado e identificado los flavonoides presentes en los extractos hexánicos correspondientes a 10 especies de dicho género, por técnicas de HPLC y con ayuda de patrones. Entre los compuestos aislados, cabe destacar la isoscutelareina 7-0-(alosil-glucósido), presente en todos los extractos

    Towards two-dimensional metallic behavior at LaAlO3/SrTiO3 interfaces

    Full text link
    Using a low-temperature conductive-tip atomic force microscope in cross-section geometry we have characterized the local transport properties of the metallic electron gas that forms at the interface between LaAlO3 and SrTiO3. At low temperature, we find that the carriers do not spread away from the interface but are confined within ~10 nm, just like at room temperature. Simulations taking into account both the large temperature and electric-field dependence of the permittivity of SrTiO3 predict a confinement over a few nm for sheet carrier densities larger than ~6 10^13 cm-2. We discuss the experimental and simulations results in terms of a multi-band carrier system. Remarkably, the Fermi wavelength estimated from Hall measurements is ~16 nm, indicating that the electron gas in on the verge of two-dimensionality.Comment: Accepted for publication in Physical Review Letter

    Vortices in a Bose-Einstein condensate confined by an optical lattice

    Get PDF
    We investigate the dynamics of vortices in repulsive Bose-Einstein condensates in the presence of an optical lattice (OL) and a parabolic magnetic trap. The dynamics is sensitive to the phase of the OL potential relative to the magnetic trap, and depends less on the OL strength. For the cosinusoidal OL potential, a local minimum is generated at the trap's center, creating a stable equilibrium for the vortex, while in the case of the sinusoidal potential, the vortex is expelled from the center, demonstrating spiral motion. Cases where the vortex is created far from the trap's center are also studied, revealing slow outward-spiraling drift. Numerical results are explained in an analytical form by means of a variational approximation. Finally, motivated by a discrete model (which is tantamount to the case of the strong OL lattice), we present a novel type of vortex consisting of two pairs of anti-phase solitons.Comment: 10 pages, 6 figure

    Point defect distribution in high-mobility conductive SrTiO3 crystals

    Get PDF
    We have carried out positron annihilation spectroscopy to characterize the spatial distribution and the nature of vacancy defects in insulating as-received as well as in reduced SrTiO3 substrates exhibiting high-mobility conduction. The substrates were reduced either by ion etching the substrate surfaces or by doping with vacancies during thin film deposition at low pressure and high temperature. We show that Ti-vacancies are native defects homogeneously distributed in as-received substrates. In contrast, the dominant vacancy defects are the same both in ion-etched and substrates reduced during the film growth, and they consist of non-homogeneous distributions of cation-oxygen vacancy complexes. Their spatial extension is tuned from a few microns in ion-etched samples to the whole substrate in specimens reduced during film deposition. Our results shed light on the transport mechanisms of conductive SrTiO3 crystals and on strategies for defect-engineered oxide quantum wells, wires and dots

    The teaching of recent and violent conflicts as challenges for history education

    Get PDF
    This paper has been written with the support of Projects EDU2015-65088P from the DGICYT (Ministry of Education, Spain) and also the Project PICT2012-1594 from the ANPCYT (Argentina) coordinated by the autho

    Lysine-PEGylated Cytochrome C with Enhanced Shelf-Life Stability

    Get PDF
    Cytochrome c (Cyt-c), a small mitochondrial electron transport heme protein, has been employed in bioelectrochemical and therapeutic applications. However, its potential as both a biosensor and anticancer drug is significantly impaired due to poor long-term and thermal stability. To overcome these drawbacks, we developed a site-specific PEGylation protocol for Cyt-c. The PEG derivative used was a 5 kDa mPEG-NHS, and a site-directed PEGylation at the lysine amino-acids was performed. The effects of the pH of the reaction media, molar ratio (Cyt-c:mPEG-NHS) and reaction time were evaluated. The best conditions were defined as pH 7, 1:25 Cyt-c:mPEG-NHS and 15 min reaction time, resulting in PEGylation yield of 45% for Cyt-c-PEG-4 and 34% for Cyt-c-PEG-8 (PEGylated cytochrome c with 4 and 8 PEG molecules, respectively). Circular dichroism spectra demonstrated that PEGylation did not cause significant changes to the secondary and tertiary structures of the Cyt-c. The long-term stability of native and PEGylated Cyt-c forms was also investigated in terms of peroxidative activity. The results demonstrated that both Cyt-c-PEG-4 and Cyt-c-PEG-8 were more stable, presenting higher half-life than unPEGylated protein. In particular, Cyt-c-PEG-8 presented great potential for biomedical applications, since it retained 30-40% more residual activity than Cyt-c over 60-days of storage, at both studied temperatures of 4 °C and 25 °C.publishe
    • …
    corecore