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Abstract: Cytochrome c (Cyt-c), a small mitochondrial electron transport heme protein, has been 
employed in bioelectrochemical and therapeutic applications. However, its potential as both a bio-
sensor and anticancer drug is significantly impaired due to poor long-term and thermal stability. To 
overcome these drawbacks, we developed a site-specific PEGylation protocol for Cyt-c. The PEG 
derivative used was a 5 kDa mPEG-NHS, and a site-directed PEGylation at the lysine amino-acids 
was performed. The effects of the pH of the reaction media, molar ratio (Cyt-c:mPEG-NHS) and 
reaction time were evaluated. The best conditions were defined as pH 7, 1:25 Cyt-c:mPEG-NHS and 
15 min reaction time, resulting in PEGylation yield of 45% for Cyt-c-PEG-4 and 34% for Cyt-c-PEG-
8 (PEGylated cytochrome c with 4 and 8 PEG molecules, respectively). Circular dichroism spectra 
demonstrated that PEGylation did not cause significant changes to the secondary and tertiary struc-
tures of the Cyt-c. The long-term stability of native and PEGylated Cyt-c forms was also investigated 
in terms of peroxidative activity. The results demonstrated that both Cyt-c-PEG-4 and Cyt-c-PEG-8 
were more stable, presenting higher half-life than unPEGylated protein. In particular, Cyt-c-PEG-8 
presented great potential for biomedical applications, since it retained 30–40% more residual activ-
ity than Cyt-c over 60-days of storage, at both studied temperatures of 4 °C and 25 °C. 
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1. Introduction 
Cytochrome c (Cyt-c) is a small protein with 104 amino acids and a molecular weight 

of about 12 kDa. It is a heme protein involved in mitochondrial electron transfer, even 
though it is not considered a natural enzyme; it catalyzes several chemical reactions, in-
cluding hydrogen peroxide reduction, aromatic oxidation, hydroxylation, epoxidation 
and N-demethylation [1]. Based on the broad heterogeneity obtained in biotransformation 
reactions catalyzed by Cyt-c, along with its high reactivity towards different substrates 
and its electron transfer capability, this protein has been recently explored as a biosensor 
of hydrogen peroxide, nitric oxide and polycyclic aromatic hydrocarbons [1–3]. Further-
more, Cyt-c has been studied as an anticancer biopharmaceutical candidate in nanosized, 
cancer-cell targeted delivery systems [4–8]. However, the potential biosensing and bio-
pharmaceutical applications of Cyt-c are compromised by irreversible denaturation, ag-
gregation and/or precipitation. Its instability results from the fragile structure shared by 
most proteins. 

The stability of biosensors during storage is crucial to guarantee reproducibility and 
feasibility of biochemical measurements. Generally, long-term stability of protein-based 
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sensors is the major obstacle to their potential application [9]. Along the same line, long-
term stability of biopharmaceuticals is extremely important (i.e., it is one of the crucial 
criteria for biopharmaceutical development). In this sense, chemical modifications of pro-
teins are a key solution to overcome these drawbacks. PEGylation is one of the most com-
mon chemical modifications applied in the protein-based biosensing field and in the de-
sign of novel, improved and more stable biopharmaceuticals, mostly due to the ad-
vantages it may confer to proteins [2]. 

The chemical bonding of polyethylene glycol (PEG) to the protein increases the pro-
tein’s solubility in water and some organic solvents (such as dichloromethane), and pro-
vides long-term stability while reducing denaturation, aggregation and precipitation, as 
well as preventing immunogenicity and proteolytic degradation due to the PEG shielding 
effect [10–13]. Other bioconjugation techniques to improve stability of proteins are PASyl-
ation, XTEN, fusion proteins and glycosylation. The literature shows that many redox 
proteins with sensing applications have already been PEGylated to improve stability, e.g., 
horseradish peroxidase [14], hemoglobin [15] and myoglobin [16]. 

Recent studies showed that PEGylation could kinetically stabilize the Cyt-c structure 
through maintenance of the heme group, while decreasing the unfolding rate [2,17]. How-
ever, most of the PEGylation reactions reported in the literature in the field of biosensors 
are not site-specific, resulting in the random production of PEGylated conjugates with 
increased polydispersity [3,18]. This unspecific reaction leads to decreased bioactivity and 
the lack of batch-to-batch control, resulting in a mixture of protein-based biosensors with 
differential biosensing activity [10,19]. To overcome this problem, we developed a site-
specific PEGylation protocol for Cyt-c through the conjugation of methoxy PEG succin-
imidyl NHS ester (mPEG-NHS). This functionalized mPEG is attached to the protein 
through a nucleophilic attack of primary protein amine groups, forming an ester bond 
and releasing an NHS group. Reaction conditions, such as pH, molar proportion of Cyt-
c:PEG and reaction time, were studied, and the effect of PEGylation on Cyt-c chemical 
structure, function and stability over time was examined. The results pointed to Cyt-c-
PEG-8 (with eight mPEG molecules attached) as the conjugate with the highest stability, 
showing that this chemical modification actual preserves the protein structure and func-
tion.  

2. Materials and Methods 
2.1. Materials 

Horse heart cytochrome c (Cyt-c, ≥95% purity), 2,2′-azino-di-(3-ethylbenzthiazoline 
sulfonic acid) (ABTS, ≥95% purity), hydrogen peroxide (99% purity) and hydroxylammo-
nium chloride (99% purity) were obtained from Sigma-Aldrich® (St. Louis, MO, USA). 
Methoxy PEG N-hydroxysuccinimide ester (mPEG-NHS, 5 kDa) with high purity was ac-
quired from Nanocs® (New York, NY, USA). The aqueous buffer used in the PEGylation 
reaction was potassium phosphate buffer (100 mM). All other reagents were of analytical 
grade. The water used was double-distilled, passed through a reverse osmosis system and 
was further treated with   Direct-Q® 8 UV remote water purification system (Merck®, 
São Paulo, Brazil). 

2.2. Cyt-c PEGylation Reaction 
The PEGylation reaction was carried following the method provided by the PEG de-

rivative supplier [20]. A schematic description of the PEGylation reaction can be found in 
Figure1a. Briefly, Cyt-c was dissolved in 0.1 M of potassium phosphate buffer and allowed 
to react with mPEG-NHS at room temperature and constant magnetic stirring at 400 rpm. 
Several parameters were optimized, namely the pH (range from 7 to 12), protein:mPEG-
NHS molar proportion (1:5, 1:10, 1:25 or 1:35) reaction time (15, 30 or 45 min). At the end, 
2 M of hydroxylamine (1:10 v/v) was added to stop the reaction as well as to avoid the 
production of undesirable and unstable products (such as ester conjugation).  
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2.3. In Silico Studies: Molecular Visualization of Cyt-c PEGylation 
The pKa of N-terminal and lysine residues was determined using the software H++ 

version 3.2 (Virginia Tech, Blacksburg, VA, USA) to understand the possible sites of 
mPEG attachment in Cyt-c (crystal structure PDB code: 1HRC) [21]. Additionally, molec-
ular models of Cyt-c were constructed using PyMOL version 1.3 (Molecular Graphics Sys-
tem®, Schrödinger, LLC, New York, NY, USA) based on the Cyt-c crystal structure. In 
silico models were generated of four and eight molecules of mPEG (5 kDa) attached to 
lysine residues of Cyt-c to form Cyt-c-PEG-4 (Lys 22, 25, 27 and 39) and Cyt-c-PEG-8 (Lys 
22, 25, 27, 39, 55, 60, 79 and 86), respectively. All mPEG chains were auto-sculpted to adjust 
molecular conformation. 

2.4. Purification of PEGylated Conjugates 
PEGylation reaction mixtures were purified by size exclusion chromatography (SEC) 

using a Superdex™ 200 Increase 10/300 GL column (crosslinked agarose–dextran resin) 
(Cytiva®, Marlborough, MA, USA) in an AKTA™ purifier system (Cytiva®, Marlborough, 
MA, USA) [22]. The column was equilibrated with 0.01 M phosphate buffer (0.14 M NaCl, 
pH 7.4) and eluted with the same buffer at a flow of 0.75 mL.min−1. The protein fractions 
(determined by UV at 280 nm) corresponding to unreacted Cyt-c and modified proteins 
Cyt-c-PEG-4 (i.e., protein with 4 mPEG molecules attached) and Cyt-c-PEG-8 (i.e., protein 
with 8 mPEG molecules attached) were stored at −20 °C for further study. Cyt-c concen-
tration was determined based on a calibration curve established in the SEC-FPLC at the 
conditions described before. The retention time of Cyt-c (confirmed with the commercial 
and pure sample) was found to be ca. 24 min within an analysis time of 40 min. The per-
centage yield of native and modified Cyt-c conjugates was calculated by dividing the 
FPLC peak area corresponding to the target protein by the total area of all peaks corre-
sponding to the native protein and all conjugates present in the sample. 

2.5. Determination of PEGylation Degree of Cyt-c Conjugates by SEC 
The PEGylation degree of the Cyt-c conjugates was determined by SEC [22,23]. The 

molecular weight (MW) of protein conjugates and, consequently, the degree of PEGyla-
tion was determined by column (Superdex™ 200 Increase 10/300 GL, Cytiva®, Marlbor-
ough, USA) calibration with several proteins of known molecular weight, and the void 
volume (V0) was determined using blue dextran 2000. All standards were from Cytiva®, 
Marlborough, MA, USA. The standard proteins were run at the same conditions assayed 
for the SEC purification of Cyt-c conjugates: 0.01 M phosphate buffer (with 0.14 M NaCl, 
pH 7.4), at 0.75 mL.min−1 flow rate. The MW of the protein conjugates was determined by 
the linear relationship obtained by plotting the Kav value of the proteins (as calculated by 
Equation 1) and the logarithms of their MW. The calibration curve is presented in supple-
mentary materials Figure S1.  𝐾௔௩ =  (𝑉௘ − 𝑉଴)(𝑉 − 𝑉଴) (1)

where elution volume (Ve) is the amount of eluent collected from the start of loading the 
sample to the point of its maximal elution; (VT) corresponds to the total volume of the 
column. 

The MW determined by this technique with globular proteins seems to be accurate 
to about ±10%, resulting in the uncertainty in the average number of PEGs per Cyt-c to be 
less than ±1. Chromatograms corresponding to each specific PEGylation condition are pre-
sented in the supplementary materials (Figures S2, S4 and S6). 

2.6. Gel Electrophoresis 
Protein samples with 20 µL of volume were applied to a 12% polyacrylamide gel (10 

cm × 10.5 cm, 0.75 mm thick) under reducing conditions (SDS-PAGE) according to 
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Laemmli (1970) [24]. The electrophoretic run was performed by applying a 120 V potential 
for approximately 1 h 30 min using a vertical Mini Protean™ system (Bio-Rad®, Hercules, 
CA, USA). Protein marker Precision Plus Protein (#1610374, Bio-Rad®, Hercules, CA, USA) 
was used. Gels were stained with Coomassie Brilliant Blue R-250 (Thermo Scientific®, Wal-
tham, MA, USA) for visualization of protein bands.  

2.7. Circular Dichroism (CD) Spectroscopy 
CD spectra of Cyt-c and its modified forms were obtained in a J-720 Spectropolar-

imeter (Jasco®, Tokyo, Japan). The final spectra were the average of six scans, with sub-
traction of the buffer spectrum (0.01 M phosphate buffer, 0.14 M NaCl, pH 7.4). CD spectra 
were obtained in far UV (190–260 nm). Samples were placed in 1 mm-optical-length 
quartz cells, with concentration ranging from 6 to 15 µM. Spectra intensities (θ, mdeg) 
were converted to delta epsilon (Δε, cm−1.M−1) based on Equation 2:  Δε =  𝜃32.98 . 𝐶 . 𝑙 (2)

where (C) is the protein concentration in mol.L−1, and (l) is the optical length in cm. 

2.8. Determination of Cyt-c Long-Term Stability 
Long-term stability was investigated at 4 °C (refrigerated) and room temperature 

(~25 °C). The peroxidase activity was measured across 60 days and the residual activity 
(%) calculated, with the activity on day 1 considered 100%. The enzyme-like activity of 
Cyt-c was determined by the catalytic oxidation of 50 µM ABTS in the presence of 0.5 mM 
hydrogen peroxide [25]. The concentration of Cyt-c or PEGylated Cyt-c forms was 10 µM 
in 0.01 M phosphate buffer (with the addition of 0.14 M NaCl, pH 7.4). The reaction was 
initiated by the addition of hydrogen peroxide, and the increase in absorbance at 418 nm 
was measured in a SpectraMax Plus 384 (Molecular Devices®, California, CA, USA) spec-
trophotometer.  

3. Results and Discussion 
3.1. Cyt-c PEGylation 

Regarding the design of site-specific polymer-protein conjugates, the selection of ap-
propriated conditions for the PEGylation reaction is the first step towards obtaining a suc-
cessful site-specific PEGylated product. Several final properties of the conjugate are di-
rectly related to the physicochemical properties of the selected PEG derivative [12,26,27]. 
Moreover, the number and local reactivity of available attachment sites in the amino acid 
sequence of the target protein are important criteria to choose the type of PEGylation re-
action [26]. Therefore, the reaction design must be tailored to the protein of interest, de-
pending on its physicochemical properties, amino acid sequence and final application 
[11,28]. Taking this into account, the amino (-NH2) reactive PEGylation, using N-hydroxy-
succinimide (NHS) functionalized methoxy polyethylene glycol (mPEG-NHS), was se-
lected due to its inherent advantages. In this kind of PEGylation, the PEG polymer is gen-
erally attached to the ɛ amino group of lysine by a nucleophilic attack of the amine group 
to the carboxyl of the reactive mPEG, releasing NHS as a byproduct (Figure 1a) [29,30]. 
Compared to other mPEG-NHS ester derivatives, succinimidyl carbonate-functionalized 
mPEG-NHS offers superior reactivity and higher stability in aqueous solution [20]. 
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(a) 

 

(b) 

 

(c) 

 

Figure 1. Representation of PEGylation reaction of cytochrome c (Cyt-c) for the attachment of 4 and 
8 PEG molecules. (a) Schematic overview of PEGylation reaction in primary amine groups of Cyt-c 
with methoxy polyethylene glycol N-hydroxysuccinimide (mPEG-NHS). Graphical representation 
of theoretical lysine residues (Lys) on Cyt-c (PDB code 1HRC) and its (b) 4-PEGylated, and (c) 8-
PEGylated counterparts using the PyMOL® software. Gray lines in the Cyt-c PEGylated forms rep-
resent attached mPEG chains. 

3.2. Formatting of Mathematical Components 

The PEGylation of Cyt-c with mPEG-NHS resulted in three different degrees of pol-
ymer conjugation: representing the attachment of four mPEG molecules (Cyt-c-PEG-4), 
eight mPEG molecules (Cyt-c-PEG-8) and a poly PEGylated form (Cyt-c-Poly PEG). In 
order to understand the location of PEGylation sites in Cyt-c, bioinformatics studies were 
conducted to determine the pKa of the amino acids that can be PEGylated (Table 1) and to 
construct the molecular models of Cyt-c-PEG-4 (Figure 1b) and Cyt-c-PEG-8 (Figure 1c). 

Primary amines exist at the N-terminus of each polypeptide chain and in the side-
chain of lysine (Lys, K). PEGylation of amine groups preferentially takes place in depro-
tonated primary amines, in which the lone pair of electrons is freely available for the nu-
cleophilic attack; therefore, it depends on the residue’s pKa. The location in the 
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polypeptide chain is also important, since the amino acids more exposed to the solvent 
and located in flexible regions of the protein are more likely to be PEGylated. 

Table 1. pKa and location of the lysine (Lys) residues and N-terminal moiety of cytochrome c (PDB 
code 1HRC code). 

Residue Theoretical pKa Location/Secondary Structure 
N terminal 11.8 N terminal moiety 

Lys5 >12.0 alpha-helix 
Lys7 10.9 alpha-helix 
Lys8 9.7 alpha-helix 

Lys13 10.8 alpha-helix 
Lys22 9.9 Ω loop 
Lys25 11.2 Ω loop 
Lys27 10.9 Ω loop 
Lys39 10.3 Ω loop 
Lys53 10.7 alpha-helix 
Lys55 10.4 alpha-helix transition 
Lys60 10.4 alpha-helix transition 
Lys72 8.6 alpha-helix 
Lys73 11.0 alpha-helix 
Lys79 10.4 Ω loop 
Lys86 10.3 Ω loop 
Lys87 10.7 alpha-helix transition 
Lys88 10.4 alpha-helix 
Lys99 >12.0 alpha-helix 

Lys100 10.7 alpha-helix 

As shown in Table 1, Cyt-c contains one N-terminal residue (Met) and 19 Lys residues 
that can be potentially modified by mPEG covalent binding. Of these, six are part of loop 
regions (four in the largest loop more accessible to mPEG and two in an intermediate 
loop), three are in the alpha-helix transition, and the remaining (10) are located in the al-
pha-helix composition. According to previous studies, the lysine residues more available 
for mPEG attachment are Lys22, Lys25, Lys27 and Lys39, all located in the flexible region 
(Ω loop) of the Cyt-c polypeptide chain [18]. In this sense, the site-specific PEGylated form 
Cyt-c-PEG-4 refers to mPEG attachment to those amino acid residues (Figure 1b). Regard-
ing the other four lysine residues covalently bound to mPEG in Cyt-c-PEG-8, Lys55, 
Lys60, Lys79 and Lys86 are the most probable binding sites (Figure 1c). These lysine resi-
dues are present in flexible regions of the protein (Ω loop and alpha-helix transition). The 
N-terminal group of Cyt-c is less prone to PEGylation at neutral pH due to the extremely 
high pKa, which makes it preferentially protonated at most pH values, therefore hamper-
ing the nucleophilic attack. 

3.3. Effect of pH on the PEGylation of Cyt-c 
PEGylation reactions are mostly conducted in single-step unidirectional batch sys-

tems to guarantee that all products have followed the same procedure, enhancing valida-
tion, reproducibility and optimization of the reaction. One of the key parameters to design 
a site-specific PEGylation reaction at amino groups is the pH. By controlling pH, PEGyla-
tion can be manipulated to produce specific conjugates, an essential feature to promote 
batch-to-batch control.  

The effect of pH on Cyt-c PEGylation is presented in Figure 2. As can be seen, the 
number of PEGylated forms increases with the pH due to the higher probability of lysine 
residues to react with mPEG derivative, since in pH > pKa they are deprotonated. The 
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native protein amount is also lower in more alkaline pH, i.e., from pH 7 (Figure 2a) to pH 
9 (Figure 2c), probably as a result of a higher degree of PEGylation. However, the opposite 
trend is observed for pH > 10: the degree of PEGylation decreases and the concentration 
of native protein increases to 66% at pH 12 (Figure 2f). This behavior can be explained by 
the higher hydrolysis rate of the mPEG-NHS in alkaline solutions, leading to lower con-
centrations of this reagent and, consequently, decreasing PEGylation yield. The highest 
yields of Cyt-c-PEG-4 (38%) and Cyt-c-PEG-8 (26%) were both observed at pH 7 (Figure 
2a), defined as the optimal pH in this specific case. 

   

   

Figure 2. Effect of pH on cytochrome c (Cyt-c) PEGylation yield (%) at different pH values: (a) pH 
= 7, (b) pH = 8, (c) pH = 9, (d) pH = 10, (e) pH = 11 and (f) pH = 12. The PEGylation reaction was 
performed in 0.1 M potassium phosphate buffer, 1:25 molar proportion (Cyt-c:mPEG-NHS, 5 kDa), 
during 30 min: n.d., not detected. 

Figures S2 and S3, respectively, show the chromatograms and electrophoretic pro-
files (SDS-PAGE) of Cyt-c PEGylation reaction media at different pH values. The results 
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depicted in Figure S3 seem to corroborate the PEGylation yield data (Figure 2), with each 
band representing one, site-specific Cyt-c-PEGylated form as shown by the peaks of the 
chromatograms (Figure S2). The bands presenting higher intensity correspond to pH 7–
12, as opposed to those obtained for the pH range between 8 and 10, in which the most 
intense bands correspond to the poly PEGylated forms. 

Although the effect of pH on the PEGylation of Cyt-c is practically unexplored, this 
parameter was revealed to be extremely important in the manipulation of a site-specific 
reaction. The influence of pH on protein PEGylation has been already studied for other 
proteins, such as lysozyme [31], horseradish peroxidase (HRP) [32], N-carbamoyl-L-
amino acid amidohydrolase (L-N-carbamoylase) [32] and rh-interferon-α2B [33], in which 
the important effect of this parameter was also observed. In these studies, the rate of 
PEGylation was found to increase with pH, in agreement with the results obtained for 
Cyt-c PEGylation. Nonetheless, only a narrow range of pH (i.e., from 6 to 8) was evaluated 
in the literature. Thus, this study enlarges the knowledge of the effect of pH on protein 
PEGylation. 

3.4. Effect of mPEG Derivative Concentration on the Cyt-c PEGylation Reaction 
The mPEG derivative concentration is an important parameter and influences reac-

tion yields. The mPEG derivative (mPEG-NHS) was investigated at 1:5, 1:10, 1:25 and 1:35 
Cyt-c:mPEG-NHS molar ratios, and results are presented in Figure 3a, while Figures S4 
and S5, respectively, correspond to the resultant chromatograms and representative SDS-
PAGE of the reaction media. 

 
 

Figure 3. (a) Effect of protein:mPEG-NHS molar ratio on cytochrome c (Cyt-c) PEGylation yield (%). 
The PEGylation reaction was performed at pH 7 for 30 min. (b) Effect of reaction time on Cyt-c 
PEGylation yield. The PEGylation reaction was performed in 0.1 M potassium phosphate buffer (pH 
7), 1:25 molar proportion (protein:mPEG-NHS): n.d., not detected. 

The lowest molar ratio values, specifically 1:5 and 1:10, resulted in lower PEGylation 
yields and higher amounts of unreacted Cyt-c present. In addition, the poly PEGylated 
forms were not detected at those experimental conditions (Figure 3a). The molar ratio 1:35 
resulted in polydispersity of the polyPEGylated products due to the excess of mPEG and, 
therefore, polydispersity [18,32]. In this sense, the optimal result was obtained at molar 
ratio 1:25, which corresponded to higher yield of site-specific Cyt-c-PEGylated forms and, 
as already discussed, less unreacted protein. 
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3.5. Effect of Reaction Time on the PEGylation of Cyt-c 
The reaction time for Cyt-c PEGylation was also investigated for 15, 30 and 45 min 

(Figure 3b). According to the results, the poly PEGylation yield increases with the reaction 
time. Therefore, higher yield of Cyt-c-PEG-4 (45%) and Cyt-c-PEG-8 (32%) were obtained 
in the shortest time of 15 min, with no poly PEGylated forms produced, which could fa-
cilitate the purification process. Figures S6 and S7 show the chromatograms and SDS-
PAGE, respectively, of Cyt-c PEGylation reaction at the studied times. The effect of the 
reaction time on Cyt-c PEGylation yield was already described in the literature [18], in 
which the PEGylation yield and the polydispersity increased with time. Actually, the 
shorter time, which was selected as the best condition in this work, represents an eco-
nomic improvement of the overall process, when compared, for example, with the two 
hours (with a total PEGylation yield of 60.2 ± 0.7%) defined in the literature [18] as the 
best condition. 

Summing up, a designed and tailor-made PEGylation reaction was developed, and 
the best experimental conditions were determined to be pH 7, 1:25 molar ratio (Cyt-
c:mPEG-NHS) and reaction time of 15 min. At these conditions, two forms of site-specific 
PEGylated Cyt-c (Cyt-c-PEG-4 and Cyt-c-PEG-8) were obtained with no undesirable poly 
PEGylated forms identified by chromatogram (Figure 4a) and SDS-PAGE (Figure 4b). 
These two PEGylated Cyt-c forms were purified through SEC-FPLC and further applied, 
as saline solution (sodium phosphate buffer, 0.14 M NaCl, pH 7.4), in spectroscopic stud-
ies to understand the effect of PEGylation on the Cyt-c structure, as well as on the long-
term stability of the conjugates obtained, as shown below. 

(a) (b) 

  

Figure 4. Chromatogram (a) and electrophoretic profile (b) of cytochrome c (Cyt-c) after PEGylation 
reaction under best experimental conditions: pH 7, 1:25 molar ratio (Cyt-c:mPEG-NHS) and reaction 
time 30 min: Cyt-c-PEG-4, 4 mPEG molecules attached; Cyt-c-PEG-8, 8 mPEG molecules attached. 

3.6. Effect of PEGylation on the Cyt-c Structure 
To understand the effect of PEGylation on Cyt-c secondary and tertiary structures, 

CD measurements have already been performed, as previously shown by the authors of 
[34]. CD spectra of native and PEGylated Cyt-c present negative bands centered at 222 
and 208 nm, characteristics of a high content of α-helical secondary structure (Figure 5), 
in agreement with the horse heart Cyt-c high-resolution three-dimensional structure 
solved by X-ray diffraction crystallography [21]. As already shown by other authors [2,17], 
the main results obtained in this work also show that PEGylation reaction of Cyt-c caused 
no significant spectral changes, proving that the protein secondary structure is main-
tained. CD data were further analyzed by spectra deconvolution using BeStSel online soft-
ware [35] and confirmed that the PEGylated forms kept their secondary structure content 
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through the PEGylation reaction and protein purification steps (Figure 5, Table 2). The 
predominant α-helical secondary structure is maintained in the protein conjugates, with 
small deviations in the 8x-PEG form (Table 2). 

 
Figure 5. Experimental far-UV CD spectra (black lines) of Cyt-c (a), Cyt-c-PEG-4 (b), and Cyt-c-PEG-
8 (c) in 0.01 M sodium phosphate buffer (0.14 M NaCl, pH 7.4); sample concentration ranged from 
6 to 15 µM [34]. Theoretical CD spectra (red lines) of native and PEGylated Cyt-c conjugates calcu-
lated from experimental spectra using BestSel algorithm, and fit residuals. 

Table 2. Secondary structure of native and PEGylated Cyt-c calculated from CD spectra of the en-
zyme [34]. 

Cyt-c Form Alpha Beta Random 
Native 41 22 37 

Cyt-c-PEG-4 41 19 40 
Cyt-c-PEG-8 38 26 36 

3.7. Effect of PEGylation on Long-Term Stability 
Considering the further application of Cyt-c and PEGylated forms as either biosen-

sors or anticancer biopharmaceutical, it is necessary to demonstrate structural stability. 
Therefore, the residual Cyt-c activity was measured by considering the ABTS oxidation 
by hydrogen peroxidase after long-term storage at different temperatures. The results 
show that both native Cyt-c and PEGylated Cyt-c forms in saline solution retained the 
peroxidase activity for several days of storage at both refrigerated (4 °C) and room (25 °C) 
temperatures (Figure 6a and Figure 6b, respectively). As summarized in Table S1, un-
PEGylated Cyt-c presents a half-life of approximately 44 days at 4 °C and approximately 
24 days at room temperature (~25 °C), while Cyt-c-PEG-8 and Cyt-c-PEG-4 present half-
life beyond 60 days at both temperatures, hence leading to an improvement in shelf sta-
bility.  

Cyt-c-PEG-4 and Cyt-c-PEG-8 showed higher residual activity than the native pro-
tein. When stored up to 60 days at 4 °C, Cyt-c-PEG-8 and Cyt-c-PEG-4 retained 80% and 
62% of their activity, respectively, while Cyt-c retained only 43% of its activity (Figure 6a 
and Table S1). As expected, Cyt-c (unPEGylated and PEGylated forms) was more stable 
at the lower temperature. At room temperature (~25 °C) Cyt-c residual activity was only 
27%, contrasting with ≥53% for both PEGylated forms (Figure 6b and Table S1). Indeed, a 
common characteristic of a large number of enzymes is their low shelf-stability at ambient 
temperature, especially in solution, owing to protein aggregation, precipitation or even 
hydrolysis [36,37]. The Cyt-c with higher mPEG content (i.e., Cyt-c-PEG-8) presented su-
perior stability compared to Cyt-c-PEG-4, particularly when under refrigeration. Further-
more, a previous study from our group disclosed an additional benefit of PEGylation re-
garding its thermoprotective role on Cyt-c, especially at higher temperatures (i.e., 70–95 
°C). The enzyme half-life (t1/2), which is a key parameter in terms of economic feasibility 
and resistance to thermal inactivation, was constantly superior in the studied 
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temperatures for PEGylated Cyt-c compared to native Cyt-c, with a more pronounced 
thermostability for Cyt-c-PEG-8 (i.e., the conjugate with the higher PEGylation degree) 
[36]. 

 

Figure 6. Stability of native and PEGylated forms of cytochrome c (Cyt-c) stored at 4 °C (a) and 25 
°C (b). Residual peroxidative-like activity of Cyt-c (control) was determined by the catalytic oxida-
tion of 50 µM ABTS in the presence of 0.5 mM hydrogen peroxide. The concentration of native and 
PEGylated Cyt-c forms was 10 µM in 0.01 M phosphate buffer (0.14 M NaCl, pH 7.4). 

These results demonstrate that site-specific PEGylation is a valuable strategy to in-
crease Cyt-c stability and shelf life. In general terms, it could be a helpful approach to 
increase the stability of dried proteins (e.g., lyophilized form) [38] or proteins immobilized 
in solid matrixes [39]. Other works from the literature present alternative strategies to im-
prove long-term stability of Cyt-c, such as storage in an aqueous solution of cholinium-
based ionic liquids [40], aminoacid-based ionic liquids [41], surface active ionic liquids 
[42,43] and deep eutectic solvents (e.g., choline chloride ([Ch]Cl) and ethylammonium 
chloride (EAC)) [44]. However, these alternative solvents, such as deep eutectic solvents 
and ionic liquids, are not yet approved in pharmaceutical formulations. For that reason, 
polishing steps would be necessary to completely remove the solvent of a protein formu-
lation. PEGylation, on the other hand, not only proved to be efficient in stabilizing Cyt-c 
for extended times, but also is a technology already approved by the FDA for other pro-
teins. Overall, site-specific PEGylation could be associated with biosensing and therapeu-
tical formulations to further improve Cyt-c long-term stability and its potential to be ap-
plied as a biopharmaceutical. 

4. Conclusions 
In this work, Cyt-c PEGylated conjugates, namely Cyt-c-PEG-4 and Cyt-c-PEG-8, 

were produced. The optimal PEGylation conditions for site-specific reaction were found 
to be pH 7, 1:25 of molar ratio (Cyt-c:mPEG-NHS) and 15 min of reaction, resulting in a 
yield of 45% for Cyt-c-PEG-4 and 32% for Cyt-c-PEG-8. Moreover, circular dichroism anal-
ysis proved that the PEGylation process did not result in significant structural changes in 
Cyt-c. Additionally, Cyt-c-PEGylated forms were found to be more stable over time than 
the native protein, with higher stability observed for Cyt-c-PEG-8. Therefore, Cyt-c 
PEGylation clearly brings advantages through the possibility of extending product shelf-
life. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/bios12020094/s1, Figure S1: Calibration curve of size exclusion chromatography (SEC), 
Figure S2: Effect of pH on cytochrome c (Cyt-c) PEGylation yield, Figure S3: SDS-PAGE for the 
conjugation of mPEG-NHS to cytochrome c (Cyt-c) at different pHs, Figure S4: Effect of molar ratio 
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(protein:mPEG-NHS) on cytochrome c (Cyt-c) PEGylation yield, Figure S5: SDS-PAGE for the con-
jugation of mPEG-NHS with cytochrome c (Cyt-c) at different molar ratios (protein:mPEG-NHS), 
Figure S6: Effect of reaction time on cytochrome c (Cyt-c) PEGylation yield, Figure S7: SDS-PAGE 
for the conjugation of mPEG-NHS with cytochrome c (Cyt-c) for different reaction times, Table S1: 
Half-life (t1/2) and long-term residual activity of native and PEGylated forms of cytochrome c (Cyt-
c) stored in phosphate buffer at 4 °C and 25 °C. 
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