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Motivated by recent experimental achievement in the work with Bose-Einstein condensates
(BECs), we consider bright matter-wave solitons, in the presence of a parabolic magnetic trap
and a spatially periodic optical lattice (OL), in the attractive BEC. We examine pinned states of
the soliton and their stability by means of perturbation theory. The analytical predictions are found
to be in good agreement with numerical simulations. We then explore possibilities to use a time-
modulated OL as a means of stopping and trapping a moving soliton, and of transferring an initially
stationary soliton to a prescribed position by a moving OL. We also study the emission of radiation
from the soliton moving across the combined magnetic trap and OL. We find that the soliton moves
freely (without radiation) across a weak lattice, but suffers strong loss for stronger OLs.

I. INTRODUCTION

The recent progress in experimental and theoretical
studies of Bose-Einstein condensates (BECs) [1] has led
to an increase of interest in matter-wave (MW) solitons.
One-dimensional (1D) dark [2] and bright [3] solitons
have been observed in experiments with repulsive and at-
tractive BECs, respectively. Very recently, bright solitons
of the gap type, predicted in repulsive condensates [4],
have been created in the experiment [5]. Theoretical pre-
dictions concerning a possibility of the existence of stable
multi-dimensional solitons supported by a full [4, 6] or
low-dimensional [7] optical lattice (OL) have also been
reported. The OL is created as a standing-wave inter-
ference pattern between mutually coherent laser beams
[8, 9, 10, 11, 12, 13].

The study of the MW solitons, apart from being a fun-
damentally interesting topic, may have important appli-
cations. In particular, a soliton may be transferred and
manipulated similarly to what has been recently demon-
strated, experimentally and theoretically, for BECs in
magnetic waveguides [14] and atom chips [15]. More
generally, the similarity between bosonic MWs and light
waves suggests that numerous results known for opti-
cal solitons [16], along with the possibility of manipu-
lation of atomic states (by means of resonant electro-
magnetic waves governing transitions between different
states), may have impact on the rapidly evolving field of
quantum atom optics (see, e.g., Ref. [17]).

A context where the dynamics of MW solitons is par-
ticularly interesting is that of BECs trapped in a peri-
odic potential induced by the above-mentioned OLs. The
possibility to control the OL has led to the realization
of many interesting phenomena, including Bloch oscilla-
tions [10, 18], Landau-Zener tunneling [8] (in the presence
of an additional linear external potential), and classical

[19] and quantum [13] superfluid-insulator transitions. A
large amount of theoretical work has been already done
for nonlinear MWs trapped in OLs (see Refs. [20, 21] for
recent reviews).

The objective of this work is to systematically study
the statics and dynamics of one-dimensional (1D) bright
MW solitons confined in the combination of the parabolic
magnetic trap (MT) and OL. Additionally, we examine
the possibility to control the motion of the soliton by
means of a time-dependent OL potential (the latter is
available for the experiment). In particular, we will show
that, in the case when the OL period is comparable to the
characteristic spatial width of the soliton, it is possible
to: (a) snare and immobilize an originally moving soli-
ton in a local potential well, by adiabatically switching
the OL on, and (b) grasp and drag an initially stationary
soliton by a slowly moving OL, delivering it to a desired
location. Note that bright MW solitons may travel long
distances in the real experiment, up to several millime-
ters [3], and are truly robust objects, being themselves
coherent condensates. Thus, the manipulation of bright
MW solitons is a very relevant issue for the physics of
BECs.

The paper is organized as follows. In Sec. II, we intro-
duce the model and present analytical results. In Sec. III,
we numerically investigate static and dynamical proper-
ties of the solitons, and study possibilities to manipulate
them as outlined above. The results of the work are sum-
marized in Sec. IV.

II. THE MODEL AND ITS ANALYTICAL

CONSIDERATION

The Gross-Pitaevskii equation (GPE), which governs
the evolution of the single-atom wave function in the

http://arXiv.org/abs/cond-mat/0501031v1
http://nlds.sdsu.edu/
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mean-field approximation, takes its fundamental form in
the 3D case. A number of works analyze its reduction
to an effective 1D equation in the case of strongly elon-
gated cigar-shaped BECs [22, 23, 24]. In particular, the
derivation in Ref. [23] assumed that the potential energy
is much larger than the transverse kinetic energy. A gen-
eral conclusion is that the effective equation reduces to
the straightforward 1D version of the GPE. In the nor-
malized form, it reads [20]

iut = −1

2
uxx + g|u|2u + V (x)u, (1)

where u(x, t) is the 1D mean-field wave function (al-
though a different version of the 1D GPE, with a non-
polynomial nonlinearity, is known too [24]). The combi-
nation of the MT and OL potential corresponds to

V (x) =
1

2
Ω2x2 + V0 sin2(kx). (2)

In Eq. (1), x is measured in units of the fluid heal-
ing length ξ = ~/

√
n0g1Dm, where n0 is the peak den-

sity and g1D ≡ g3D/(2πl2
⊥
) is the effective 1D interac-

tion strength, obtained upon integrating the 3D interac-
tion strength g3D = 4π~

2a/m in the transverse direc-
tions (a is the scattering length, m the atomic mass,

and l⊥ =
√

~/mω⊥ is the transverse harmonic oscil-
lator length, with ω⊥ being the transverse-confinement
frequency). Additionally, t is measured in units of ξ/c

(where c =
√

n0g1D/m is the Bogoliubov speed of
sound), the atomic density is rescaled by the peak den-
sity n0, and energy is measured in units of the chemical
potential of the system µ = g1Dn0. Accordingly, the
dimensionless parameter Ω ≡ ~ωx/g1Dn0 (ωx is the con-
fining frequency in the axial direction) determines the
magnetic trap strength, V0 is the OL strength, while k is
the wavenumber of the OL; the latter, can be controlled
by varying the angle θ between the counter-propagating
laser beams, so that λ ≡ 2π/k = (λlaser/2) sin(θ/2) [25].
Finally, g = ±1 is the renormalized nonlinear coefficient,
which is positive (negative) for a repulsive (attractive)
condensate. As we are interested in the ordinary bright
MW solitons, which exist in case of attraction, we will
fix g = −1.

Without the external potential (Ω = V0 = 0), Eq. (1)
supports bright soliton solutions of the form

us(x − x0) = η sech [η(x − x0)] exp

(

1

2
iη2t

)

, (3)

where η is the soliton’s amplitude, and x0 is the coordi-
nate of its center. Moving solitons can be generated from
the zero-velocity one by a Galilean boost.

In the presence of the external potential, the first issue
is to identify stationary positions for the soliton. This
issue can be addressed, using an effective potential for
the soliton’s central coordinate (see, e.g., Refs. [26] and
[27]), which is defined by the integral

Veff(x0) =

∫ +∞

−∞

V (x)|us(x − x0)|2dx. (4)

Stationary positions of the soliton correspond to local
extrema of the effective potential (4). This well-known
heuristic result can be rigorously substantiated by means
of the Lyapunov-Schmidt theory applied to the under-
lying nonlinear Schrödinger equation [28]. The effective
potential corresponding to the external potential (2), act-
ing on the stationary soliton (3), can be easily evaluated:

Veff(x0) = ηΩ2x2
0 − πV0k cos(2kx0)csch

(

kπ

η

)

. (5)

Notice that, depending on values of the parameters, this
potential may have a single extremum at x0 = 0, or mul-
tiple ones.

The stability of the soliton resting at a stationary po-
sition can also be analyzed in terms of the effective po-
tential (4): the position is stable if it corresponds to a
potential minimum. This well-known result can be rig-
orously derived using the theory of Ref. [29] and refor-
mulated in Ref. [30] (see also Refs. [31] and [32]). In
particular, the curvature of the potential at the station-
ary position determines the key linearization eigenvalue
λ, that may cause an instability, bifurcating through the
origin of the corresponding spectral plane (this feature is
revealed by the heuristic [26] and rigorous [30] analysis).
The eigenvalue is easily found to be

λ2 = −η−1/2V ′′

eff(x0), (6)

confirming that minima and maxima of the effective po-
tential (4) give rise, respectively, to stable (λ2 < 0) and
unstable (λ2 > 0) equilibria.

We note in passing (this will be important in what
follows) that the minima of the effective potential (4)
differ from the minima of the external potential V (x)

trapping the atoms. For instance, for η =
√

2, V0 =
0.25 and Ω = 0.1, the first three minima of V (x) (apart
from the one at x = 0) are located at the points x =
3.0789, 6.1587, 9.2356, while the minima of Veff are found
at x0 = 3.0166, 6.0247, 9.0089.

We now turn to numerical results, aiming to examine
the validity of the theoretical predictions, as well as to
perform dynamical experiments using the OL to guide
the soliton motion.

III. NUMERICAL RESULTS

A. Stability of the solitons

We begin the numerical part by examining the steady-
state soliton solutions and their stability in the context
of Eq. (1). Such solutions are sought for in the form
u(x, t) = exp(iΛt)w(x), which results in the stationary
equation,

Λw = (1/2)wxx + w3 − V (x)w. (7)
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To examine the linear stability of the solitons, we take a
perturbed solution as

u(x) = eiΛt
[

w + ǫ
(

a(x)e−iωt + b(x)eiω∗t
)]

, (8)

where ǫ and ω are an infinitesimal amplitude and (gener-
ally speaking, complex) eigenfrequency of the perturba-
tion, and linearize Eq. (1).

Equations (1) and (2), with g = −1 and arbitrary co-
efficients V0, Ω and k, possess a scaling invariance, which
allows us to fix Λ = 1 (hence η =

√
2). It should be

noted that, in the absence of the MT (Ω = 0), the soli-
ton’s frequency should be chosen so that it belongs to a
bandgap in the spectrum of the linearized Eq. (1) with
the periodic potential (2), to avoid resonance with linear
Bloch waves. However, the MT potential with finite Ω
makes this condition irrelevant. In principle, it might be
interesting to investigate how the increase of Ω from zero
gradually lifts the condition of the resonance avoidance,
but this more formal issue is left beyond the scope of the
present work.

To estimate actual physical quantities corresponding to
the above normalized values of the parameters, we con-
sider a cigar-shaped 7Li condensate containing N ≃ 103

atoms in a trap with ωx = 2π × 25 Hz and ω⊥ = 70ωx.
Then, for a 1D peak density n0 = 108 m−1, the param-
eter Ω in Eq. (2) assumes the value Ω = 0.1, while the
time and space units correspond to 0.3 ms and 1.64µm,
respectively. These units remain valid for other values of
Ω, as one may vary ω⊥ and change ωx accordingly; in
this case, other quantities, such as N , also change.

Figure 1 summarizes our numerical findings for the sta-
bility problem. As expected, the (zeroth-well) solution
for the soliton pinned at x0 = 0 exists and it is stable for
all values of the potential’s parameters. We have typi-
cally chosen to fix Ω = 0.1 and k = 1 (i.e., λ = 2π) and
vary V0; however, it has been checked that the results
presented below adequately represent the phenomenol-
ogy for other values of (Ω, k) as well.

The next (first-well) solution, corresponding to the po-
tential minimum closest to x0 = 0, exists for values of the

MT strength V0 smaller than a critical one V
(cr)
0 . Within

the accuracy of 0.0025, we have found its numerical value

to be V
(cr)
0 |num = 0.045, in very good agreement with the

prediction following from the analytical approximation
(5) for the effective potential, which shows that the cor-
responding potential minimum disappears, merging with

a maximum, at V
(cr)
0 |anal ≈ 0.048. The corresponding

pinned-soliton solution is indeed stable prior to its dis-
appearance, in agreement with the analytical prediction
based on Eq. (6).

Similarly, the subsequent (second-well) solution, as-
sociated with the next potential minimum (if it ex-
ists), is found to disappear (for the same parameters)

at V
(cr)
0 |num = 0.1 ± 0.0025, while the analytical ap-

proximation (5) yields V
(cr)
0 |anal ≈ 0.112. Finally, a

similar result was obtained for the third-well solution:
V

(cr)
0 |num = 0.1425± 0.0025, and V

(cr)
0 |anal ≈ 0.176.
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FIG. 1: For each of the three sets of the pictures, the left
panel shows the continuation of the soliton branch to val-

ues near V
(cr)
0 , at which it disappears (for soliton solutions

trapped at different wells). The right panel shows the solu-
tion at the initial and final points of the continuation (and the
corresponding potentials). The left panels show the norm of
the soliton solution (proportional to the number of atoms in

the condensate), P =
∫ +∞

−∞
|u(x)|2dx, and its squared width,

W = P−1
∫ +∞

−∞
x2|u(x)|2dx, as a function of the OL strength

V0. The top set of the panels pertains to the zeroth-well solu-
tion (the soliton pinned in the central potential well); the solu-
tion in the right panel is shown by the solid line for V0 = 0.25,
and by the dash-dotted line for V0 = 0. The corresponding
potential is shown by the dotted line for V0 = 0.25, and by
the dashed line for V0 = 0. Similarly, in the middle set, the
solid line (and the dashed one for the potential) correspond
to V0 = 0.25, and the dashed-dotted line, together with the
dotted one for the potential, correspond to V0 = 0.06 for
the first-well solution [notice that this branch terminates at
V0 ≈ 0.045]. Finally, in the bottom set of the panels, the
solid line (and the dashed one for the potential) again cor-
respond to V0 = 0.25, while the dashed-dotted line (and the
dotted one for the potential) correspond to V0 = 0.15 for the
third-well solution [this branch terminates at V0 ≈ 0.1425].

It is quite natural that the discrepancy between the
theoretical and the numerical results increases for the
higher-well solutions, given that the numerically exact
profile of the pinned soliton gets more distorted under
the action of the MT. Notice, for example, the difference
in the amplitude between the soliton in the top panel and
in the one in the bottom panel in Fig. 1, which clearly
illustrates this effect.
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B. Soliton dynamics and manipulations

Having addressed the existence and stability of the soli-
tons, we now proceed to study their possible dynamical
manipulation by means of the OL. First, we examine the
possibility to trap a soliton using the secondary minima
in the OL potential. In particular, it is well known that,
in the absence of the OL, the soliton in the magnetic
trap, when displaced from the center, x0 = 0, executes
harmonic oscillations with the frequency Ω, as a conse-
quence of the Ehrenfest theorem (alias the Kohn’s the-
orem [33], which states that the motion of the center of
mass of a cloud of particles trapped in a parabolic poten-
tial decouples from the internal excitations). This result
can also be obtained using the variational approximation
[34] and, more generally, is one of the results obtained
from the moment equations for the condensate in the
parabolic potential [35].
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FIG. 2: (color online) An example of snaring the originally
moving soliton using the optical lattice. The left panel shows
the motion of the soliton’s center of mass. The dashed line
shows the situation without the OL (but in the presence of the
magnetic trap). If we turn on the OL potential, as the soliton
arrives at the turning point of its trajectory, it gets captured
by the secondary minimum of the full potential, created in
a vicinity of this point. The right panel shows the same,
but through the space-time contour plots of the local density,
|u(x, t)|2.

A new issue is whether one can capture the soliton
performing such oscillations by turning on the OL. Fo-
cusing, as previously, on the most relevant case when the
width of the soliton is comparable to the OL wavelength,
we display an example of the capture in Fig. 2. The
dashed and solid lines show, respectively, the harmonic
oscillations in the absence of the OL, and a numerical ex-
periment, where, at the moment when the soliton arrives
at the turning point (it is x = 3π for this case, i.e., the
third potential minimum), we abruptly turn on the OL,
so that

V (x, t) =
1

2
Ω2x2 +

1

2
V0

[

1 + tanh

(

t − t0
τ

)]

sin2(kx).

(9)
Here t0 and τ are constants controlling, respectively, the
switch-on time and duration of the process; in the simu-
lations, we use t0 = 31.7 and τ = 0.1. We clearly observe
that, contrary to the large-amplitude oscillations of the
soliton taking place when the OL is absent, the soliton is
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FIG. 3: (color online) Panels have the same meaning as in
Fig. 2, but now for the case of a moving OL. The left panel
shows the soliton’s center of mass by the solid line and the
motion of the OL’s center by the dashed line. The potential
V (x, t = 0) is sketched by the dash-dotted line to illustrate
the structure and location of the potential wells. The right
panel again shows the space-time contour plot of |u(x, t)|2.
The top set of the panels is generated with t0 = 50 and τ = 5
in Eq. (9). The second set pertains to t0 = 100 and τ = 10
(both have V0 = 0.25). The situation for a shallower well,
with V0 = 0.17, is shown in the third and fourth panels. In
all cases, xini = 0 and xfin = 3π.

now fully captured (for very long times) by the potential
minimum newly generated by the optical trap.

Instead of being a means to snare for moving soliton,
the OL may also be used as a means of moving the soliton
in a prescribed way, i.e., as a “robotic arm” depositing
the soliton at a desired location (see, e.g., [36]). This pos-
sibility is demonstrated (with varying levels of success)
in Fig. 3. The top two sets of figures are performed for
a strong OL (V0 = 0.25), while the bottom two are used
for a weaker OL potential (with V0 = 0.17). In all the
cases the potential used is

V (x) =
1

2
Ω2x2 + V0 sin2 (k(x − y(t))) , (10)
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where the position of the OL is translated according to

y(t) = xini +
1

2
(xfin − xini)

[

1 + tanh

(

t − t0
τ

)]

. (11)

Here xini and xfin are, respectively, the initial and final
(target) positions of the soliton. In the case under consid-
eration, xini = 0 and xfin = 3π, i.e., the aim is to trans-
port the MW soliton from the central well to the third
one, on the right of the center. In the top set of the pan-
els with t0 = 50 and τ = 5, we observe what happens if
the motion of the potential center is not sufficiently slow
to adiabatically transport the soliton to its final position.
In particular, the soliton gets trapped in the second well,
without being able to reach its destination. However, we
observe that this difficulty can be overcome, if the trans-
port is applied with a sufficient degree of adiabaticity;
see, e.g., the middle panel with t0 = 100 and τ = 10,
which succeeds in delivering the soliton at the desired
position. Notice that the final position of the center of
the OL is at y = 3π, which is different from the center
of the third well of the effective potential, around which
the soliton will oscillate, upon arrival. The theoretical
prediction that was presented above (for V0 = 0.25) for
this well is x0 = 9.0089, while in the simulations the soli-
ton oscillates around 9.04 in very good agreement with
the theory. The two lower sets of the panels are meant
to illustrate that adiabaticity is not the single condition
guaranteeing the efficient transport. The numerical ex-
periments are performed for a shallower potential where
the relevant well (to which the soliton is to be delivered)
is near the threshold of its existence. As a result, neither
in the case with τ = 5 (the third set of panels), nor in
the one with τ = 10, is the OL successful in transporting
the soliton at the desired position.

A similar numerical experiment in the absence of the
magnetic trap is shown in Fig. 4. The top panels display
the successful transfer of the soliton by the OL of a form
similar to that in Eq. (9), with Ω = 0 and V0 = 0.25, for
t0 = 100 and τ = 10. Notice that, in the present case, the
final positions of the OL’s center and of the soliton coin-
cide [as the atomic potential and the effective potential
for the soliton have the same set of minima in this case,
cf. Eq. (5)]. However, once again, the same experiment,
if not performed with a sufficient degree of adiabatic-
ity (as in the bottom panel of Fig. 4, with t0 = 50 and
τ = 5), is not successful in depositing the soliton at the
prescribed location. Instead, in this case the soliton con-
tinues to move along the OL, emitting radiation waves
and decreasing its amplitude.

To better illustrate the emission of radiation and its
dependence on the depth of the OL (since it is known that
the emission is absent in the parabolic potential without
the OL ingredient), we have also performed the following
numerical experiment. We took the potential of the form

V (x) =
1

2
Ω2x2 + V0 sin2(kx) + α(t)x, (12)
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FIG. 4: (color online) The same as the previous figure, but
with Ω = 0 (i.e., in the absence of the magnetic trap). For
t0 = 100 and τ = 10 (top panels) the soliton is delivered to
its final location of xfin = 3π. However, the same is not true
for t0 = 50 and τ = 5 in the bottom panel, where the soliton
fails to stop but rather continues its motion, losing more and
more of its power through emission of radiation.
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FIG. 5: Motion of the soliton induced by the linear ramp in
Eq. (13) with t1 = 100 and t2 = 120. The top panel shows
the case with strong radiation loss in a deep OL (V0 = 0.25);
notice apparent friction in the motion of the soliton’s center of
mass in the top right panel, and the corresponding loss of the
soliton’s norm in the panel below it. On the contrary, in the
case of the shallow OL, with V0 = 0.07 (the bottom panel),
the moving soliton does not generate any visible radiation. In
both cases, τ = 1 was used.

with

α(t) = 0.1 × 1

2

[

tanh

(

t − t1
τ

)

− tanh

(

t − t2
τ

)]

. (13)

In Eq. (13), t1 and t2 are, respectively, the initial and final
moment of time, between which the linear ramp is applied
to accelerate the soliton to a finite propagation speed. We
display two such numerical simulations in Fig. 5. The
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first is performed in a deep OL, with V0 = 0.25, taking
initially the soliton in the third well (t1 = 100 and t2 =
120 were used). The second simulation was performed in
a shallow OL, with V0 = 0.07, the soliton being initially
taken in the first well (the only one existing at such values
of the parameters). The top panels clearly show that the
emission of radiation leads to the gradual decay of the
soliton’s amplitude. On the contrary, when the OL is
weaker (in the bottom panels), the soliton moves through
it practically without radiation loss.

IV. CONCLUSION

We have examined a number of static and dynamic fea-
tures of bright matter-wave (MW) solitons in the pres-
ence of the magnetic trap and optical lattice (OL). We
used the perturbation theory to predict the existence and
stability of the MW solitons trapped in the combined
potential. A sequence of saddle-node bifurcations of the
effective potential, which lead to consecutive disappear-
ance of the higher-well solitonic bound states with the
decrease of the OL strength was predicted, through the
disappearance of the potential wells in the effective po-
tential.

Having identified the stability characteristics of the dif-

ferent wells analytically, and verified it numerically, we
then explored a possibility to use the OL as a tool to
manipulate the soliton. We were able to stop the soliton
at a prescribed location by turning on the OL, in an ap-
propriate fashion. We have also found the adiabaticity
condition necessary to secure the transfer of the soliton
by a moving OL (with and without the magnetic trap).
Finally, we have shown the absence of any visible emis-
sion of radiation from the soliton moving across a weak
OL; however, the soliton loses a large fraction of its norm,
moving through a stronger lattice.

Given the recent prediction of solitons and vortices in
multi-dimensional OL potentials [4] (for recent experi-
mental work on a similar topic in nonlinear optics, see
Refs. [37, 38] and references therein), it would be of par-
ticular interest to implement similar dragging and ma-
nipulation of solitons in higher dimensions. The consid-
eration of this case is currently in progress.
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