1,297 research outputs found
Application of the H-Mode, a Design and Interaction Concept for Highly Automated Vehicles, to Aircraft
Driven by increased safety, efficiency, and airspace capacity, automation is playing an increasing role in aircraft operations. As aircraft become increasingly able to autonomously respond to a range of situations with performance surpassing human operators, we are compelled to look for new methods that help us understand their use and guide their design using new forms of automation and interaction. We propose a novel design metaphor to aid the conceptualization, design, and operation of highly-automated aircraft. Design metaphors transfer meaning from common experiences to less familiar applications or functions. A notable example is the "Desktop metaphor" for manipulating files on a computer. This paper describes a metaphor for highly automated vehicles known as the H-metaphor and a specific embodiment of the metaphor known as the H-mode as applied to aircraft. The fundamentals of the H-metaphor are reviewed followed by an overview of an exploratory usability study investigating human-automation interaction issues for a simple H-mode implementation. The envisioned application of the H-mode concept to aircraft is then described as are two planned evaluations
The infrared band strengths of CH_3OH, NH_3 and CH_4 in laboratory simulations of astrophysical ice mixtures
Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe
Speckle tracking echocardiography: new ways of translational approaches in preeclampsia to detect cardiovascular dysfunction
Several studies have shown that women with a preeclamptic pregnancy exhibit an increased risk of cardiovascular disease. However, the underlying molecular mechanisms are unknown. Animal models are essential to investigate the causes of this increased risk and have the ability to assess possible preventive and therapeutic interventions. Using the latest technologies such as speckle tracking echocardiography (STE), it is feasible to map subclinical changes in cardiac diastolic and systolic function as well as structural changes of the maternal heart. The aim of this work is to compare cardiovascular changes in an established transgenic rat model with preeclampsia-like pregnancies with findings from human preeclamptic pregnancies by STE. The same algorithms were used to evaluate and compare the changes in echos of human and rodents. Parameters of functionality like global longitudinal strain (animal -23.54 ± 1.82 % vs. -13.79 ± 0.57 %, human -20.60 ± 0.47 % vs. -15.45 ± 1.55 %) as well as indications of morphological changes like relative wall thickness (animal 0.20 ± 0.01 vs. 0.25 ± 0.01, human 0.34 ± 0.01 vs. 0.40 ± 0.02) are significantly altered in both species after preeclamptic pregnancies. Thus, the described rat model simulates the human situation quite well and is a valuable tool for future investigations regarding cardiovascular changes. STE is a unique technique which can be applied in animal models and human with a high potential to uncover cardiovascular maladaptation and subtle pathologies
Ices in the edge-on disk CRBR 2422.8-3423: Spitzer spectroscopy and Monte Carlo radiative transfer modeling
We present 5.2-37.2 micron spectroscopy of the edge-on circumstellar disk
CRBR 2422.8-3423 obtained using the InfraRed Spectrograph (IRS) of the Spitzer
Space Telescope. The IRS spectrum is combined with ground-based 3-5 micron
spectroscopy to obtain a complete inventory of solid state material present
along the line of sight toward the source. We model the object with a 2D
axisymmetric (effectively 3D) Monte Carlo radiative transfer code. It is found
that the model disk, assuming a standard flaring structure, is too warm to
contain the very large observed column density of pure CO ice, but is possibly
responsible for up to 50% of the water, CO2 and minor ice species. In
particular the 6.85 micron band, tentatively due to NH4+, exhibits a prominent
red wing, indicating a significant contribution from warm ice in the disk. It
is argued that the pure CO ice is located in the dense core Oph-F in front of
the source seen in the submillimeter imaging, with the CO gas in the core
highly depleted. The model is used to predict which circumstances are most
favourable for direct observations of ices in edge-on circumstellar disks. Ice
bands will in general be deepest for inclinations similar to the disk opening
angle, i.e. ~70 degrees. Due to the high optical depths of typical disk
mid-planes, ice absorption bands will often probe warmer ice located in the
upper layers of nearly edge-on disks. The ratios between different ice bands
are found to vary by up to an order of magnitude depending on disk inclination
due to radiative transfer effects caused by the 2D structure of the disk.
Ratios between ice bands of the same species can therefore be used to constrain
the location of the ices in a circumstellar disk. [Abstract abridged]Comment: 49 pages, accepted for publication in Ap
Dietary patterns, inflammatory biomarkers and cognition in older adults: An analysis of three population-based cohorts
Background: Targeting effective strategies to prevent cognitive decline is key in the aging population. Some diets have been linked to a slower cognitive decline, potentially through reducing inflammation. We aimed at determining the effect of inflammatory dietary patterns (IDPs) on cognitive function in three population-based cohorts. Methods: In this longitudinal study, we analyzed data from the Canadian Longitudinal Study of Aging, CoLaus|PsyCoLaus and Rotterdam Study. Our analytical sample included participants over 55 years old with baseline data on cognition, dietary intake, and inflammatory markers. IDPs were derived for each cohort using reduced rank regression to reflect maximal variation in three inflammatory markers. We calculated scores of consumption of the IDPs, higher scores indicating more IDP consumption. We used inverse probability of treatment and censoring weights in the marginal structural models to estimate associations of higher versus lower quarters of consumption of an IDP on general cognition (Mini-Mental State Evaluation) and four cognitive domains (memory, verbal fluency, verbal learning and processing speed and executive function) during at least 3 years of follow-up. Results: We included 10,366 participants (mean age 68) followed-up for a mean of 5 years. Diet explained between 1 and 2% of the variation of the inflammatory markers. There were no differences in general cognition when comparing the highest to the lowest quarter of consumption of IDPs among the three cohorts. Mean differences for the four cognitive domains were of small magnitude across cohorts and not clinically relevant. Conclusion: Diet explained low variation in inflammatory markers. Consuming IDPs was not associated with mean differences in general or domain-specific cognitive function
Preclinical Toxicology Studies of Recombinant Human Platelet-Derived Growth Factor-BB Either Alone or in Combination with Beta-Tricalcium Phosphate and Type I Collagen
Human platelet-derived growth factor-BB (hPDGF-BB) is a basic polypeptide growth factor released from platelets at the injury site. It is a multifunctional molecule that regulates DNA synthesis and cell division and induces biological effects that are implicated in tissue repair, atherosclerosis, inflammatory responses, and neoplastic diseases. This paper is an overview of the toxicology data generated from a broad testing platform to determine bone, soft tissue, and systemic responses following administration of rhPDGF-BB. Moreover, the systemic and local toxicity of recombinant human PDGF-BB (rhPDGF-BB) in combination with either beta-tricalcium phosphate (β-TCP) or collagen combined with β-TCP was studied to determine dermal sensitization, irritation, intramuscular tissue responses, pyrogenicity, genotoxicity, and hemolytic properties. All data strongly suggest that rhPDGF-BB either alone or in combination with β-TCP or collagen with β-TCP is biocompatible and has neither systemic nor local toxicity, supporting its safe use in enhancing wound healing in patients
Moment equations for chemical reactions on interstellar dust grains
While most chemical reactions in the interstellar medium take place in the
gas phase, those occurring on the surfaces of dust grains play an essential
role. Chemical models based on rate equations including both gas phase and
grain surface reactions have been used in order to simulate the formation of
chemical complexity in interstellar clouds. For reactions in the gas phase and
on large grains, rate equations, which are highly efficient to simulate, are an
ideal tool. However, for small grains under low flux, the typical number of
atoms or molecules of certain reactive species on a grain may go down to order
one or less. In this case the discrete nature of the opulations of reactive
species as well as the fluctuations become dominant, thus the mean-field
approximation on which the rate equations are based does not apply. Recently, a
master equation approach, that provides a good description of chemical
reactions on interstellar dust grains, was proposed. Here we present a related
approach based on moment equations that can be obtained from the master
equation. These equations describe the time evolution of the moments of the
distribution of the population of the various chemical species on the grain. An
advantage of this approach is the fact that the production rates of molecular
species are expressed directly in terms of these moments. Here we use the
moment equations to calculate the rate of molecular hydrogen formation on small
grains. It is shown that the moment equation approach is efficient in this case
in which only a single reactive specie is involved. The set of equations for
the case of two species is presented and the difficulties in implementing this
approach for complex reaction networks involving multiple species are
discussed.Comment: 12 pages, submitted for publication in A&
Exact results for hydrogen recombination on dust grain surfaces
The recombination of hydrogen in the interstellar medium, taking place on
surfaces of microscopic dust grains, is an essential process in the evolution
of chemical complexity in interstellar clouds. The H_2 formation process has
been studied theoretically, and in recent years also by laboratory experiments.
The experimental results were analyzed using a rate equation model. The
parameters of the surface, that are relevant to H_2 formation, were obtained
and used in order to calculate the recombination rate under interstellar
conditions. However, it turned out that due to the microscopic size of the dust
grains and the low density of H atoms, the rate equations may not always apply.
A master equation approach that provides a good description of the H_2
formation process was proposed. It takes into account both the discrete nature
of the H atoms and the fluctuations in the number of atoms on a grain. In this
paper we present a comprehensive analysis of the H_2 formation process, under
steady state conditions, using an exact solution of the master equation. This
solution provides an exact result for the hydrogen recombination rate and its
dependence on the flux, the surface temperature and the grain size. The results
are compared with those obtained from the rate equations. The relevant length
scales in the problem are identified and the parameter space is divided into
two domains. One domain, characterized by first order kinetics, exhibits high
efficiency of H_2 formation. In the other domain, characterized by second order
kinetics, the efficiency of H_2 formation is low. In each of these domains we
identify the range of parameters in which, the rate equations do not account
correctly for the recombination rate. and the master equation is needed.Comment: 23 pages + 8 figure
Mycolactone Diffuses into the Peripheral Blood of Buruli Ulcer Patients - Implications for Diagnosis and Disease Monitoring.
BACKGROUND: Mycobacterium ulcerans, the causative agent of Buruli ulcer (BU), is unique among human pathogens in its capacity to produce a polyketide-derived macrolide called mycolactone, making this molecule an attractive candidate target for diagnosis and disease monitoring. Whether mycolactone diffuses from ulcerated lesions in clinically accessible samples and is modulated by antibiotic therapy remained to be established.
METHODOLOGY/PRINCIPAL FINDING: Peripheral blood and ulcer exudates were sampled from patients at various stages of antibiotic therapy in Ghana and Ivory Coast. Total lipids were extracted from serum, white cell pellets and ulcer exudates with organic solvents. The presence of mycolactone in these extracts was then analyzed by a recently published, field-friendly method using thin layer chromatography and fluorescence detection. This approach did not allow us to detect mycolactone accurately, because of a high background due to co-extracted human lipids. We thus used a previously established approach based on high performance liquid chromatography coupled to mass spectrometry. By this means, we could identify structurally intact mycolactone in ulcer exudates and serum of patients, and evaluate the impact of antibiotic treatment on the concentration of mycolactone.
CONCLUSIONS/SIGNIFICANCE: Our study provides the proof of concept that assays based on mycolactone detection in serum and ulcer exudates can form the basis of BU diagnostic tests. However, the identification of mycolactone required a technology that is not compatible with field conditions and point-of-care assays for mycolactone detection remain to be worked out. Notably, we found mycolactone in ulcer exudates harvested at the end of antibiotic therapy, suggesting that the toxin is eliminated by BU patients at a slow rate. Our results also indicated that mycolactone titres in the serum may reflect a positive response to antibiotics, a possibility that it will be interesting to examine further through longitudinal studies
Prognostic implications of various models for calculation of S-phase fraction in 259 patients with soft tissue sarcoma
The S-phase fraction (SPF) in flow cytometric DNA histograms in soft tissue sarcoma (STS) can be calculated in various ways. The traditional planimetric method of Baisch has been shown to be prognostic, but is hampered by a failure rate of around 40%. We therefore tested other models to see if this rate could be decreased with retained prognostic value. In 259 STS of the locomotor system the SPF was calculated according to Baisch and with commercial parametric MultiCycle software using different corrections for background. Using the Baisch model, 159 histograms could be evaluated for SPF. The 5-year metastasis-free survival rate (MFSR) was 0.94 for the low-risk group (defined with SPF), and 0.53 for the high-risk group. In the low-risk group, four of the seven patients who developed metastasis did so after 5 years. Using the MultiCycle software, SPF could be calculated in 253 tumours. Depending on type of background correction used, the 5-year MFSR varied between 0.67 and 0.82 for the low-risk group, and between 0.47 and 0.53 for the high-risk group. The late metastasis pattern in the low-risk group was never seen using the MultiCycle software. We conclude that in paraffin archival material, calculation of SPF according to Baisch is preferable in clinical use due to better separation between low-risk and high-risk groups, and also the possibility to identify patients who metastasize late. © 1999 Cancer Research Campaig
- …