13,676 research outputs found
Transient currents in a molecular photo-diode
Light-induced charge transmission through a molecular junction (molecular
diode) is studied in the framework of a HOMO-LUMO model and in using a kinetic
description. Expressions are presented for the sequential (hopping) and direct
(tunneling) transient current components together with kinetic equations
governing the time-dependent populations of the neutral and charged molecular
states which participate in the current formation. Resonant and off-resonant
charge transmission processes are analyzed in detail. It is demonstrated that
the transient currents are associated with a molecular charging process which
is initiated by photo excitation of the molecule. If the coupling of the
molecule to the electrodes is strongly asymmetric the transient currents can
significantly exceed the steady state current.Comment: 17 pages, 12 figures, accepted for publication in Chemical Physic
Modelling soil erosion and transport in the Burrishoole catchment, Newport, Co. Mayo, Ireland
The Burrishoole catchment is situated in County Mayo, on the northwest coast of the Republic of Ireland. Much of the catchment is covered by blanket peat that, in many areas, has become heavily eroded in recent years. This is thought to be due, primarily, to the adverse effects of forestry and agricultural activities in the area. Such activities include ploughing, drainage, the planting and harvesting of trees, and sheep farming, all of which are potentially damaging to such a sensitive landscape if not managed carefully. This article examines the sediment yield and hydrology of the Burrishoole catchment. Flow and sediment concentrations were measured at 8-hourly intervals from 5 February 2001 to 8 November 2001 with an automatic sampler and separate flow gauge, and hourly averages were recorded between 4 July 2002 and 6 September 2002 using an automatic river monitoring system [ARMS]. The authors describe the GIS-based model of soil erosion and transport that was applied to the Burrishoole catchment during this study. The results of these analyses were compared, in a qualitative manner, with the aerial photography available for the Burrishoole catchment to see whether areas that were predicted to contribute large proportions of eroded material to the drainage network corresponded with areas where peat erosion could be identified through photo-interpretation
Spectral properties of molecular oligomers. A non-Markovian quantum state diffusion approach
Absorption spectra of small molecular aggregates (oligomers) are considered.
The dipole-dipole interaction between the monomers leads to shifts of the
oligomer spectra with respect to the monomer absorption. The line-shapes of
monomer as well as oligomer absorption depend strongly on the coupling to
vibrational modes. Using a recently developed approach [Roden et. al, PRL 103,
058301] we investigate the length dependence of spectra of one-dimensional
aggregates for various values of the interaction strength between the monomers.
It is demonstrated, that the present approach is well suited to describe the
occurrence of the J- and H-bands
Three-dimensional simulations of laser-plasma interactions at ultrahigh intensities
Three-dimensional (3D) particle-in-cell (PIC) simulations are used to
investigate the interaction of ultrahigh intensity lasers (
W/cm) with matter at overcritical densities. Intense laser pulses are
shown to penetrate up to relativistic critical density levels and to be
strongly self-focused during this process. The heat flux of the accelerated
electrons is observed to have an annular structure when the laser is tightly
focused, showing that a large fraction of fast electrons is accelerated at an
angle. These results shed light into the multi-dimensional effects present in
laser-plasma interactions of relevance to fast ignition of fusion targets and
laser-driven ion acceleration in plasmas.Comment: 2 pages, 1 figur
Can Long-Range Nuclear Properties Be Influenced By Short Range Interactions? A chiral dynamics estimate
Recent experiments and many-body calculations indicate that approximately
20\% of the nucleons in medium and heavy nuclei () are part of
short-range correlated (SRC) primarily neutron-proton () pairs. We find
that using chiral dynamics to account for the formation of pairs due to
the effects of iterated and irreducible two-pion exchange leads to values
consistent with the 20\% level. We further apply chiral dynamics to study how
these correlations influence the calculations of nuclear charge radii, that
traditionally truncate their effect, to find that they are capable of
introducing non-negligible effects.Comment: 6 pages, 0 figures. This version includes many improvement
IR optical fiber-based noncontact pyrometer for drop tube instrumentation
The design of a two color pyrometer with infrared optical fiber bundles for collection of the infrared radiation is described. The pyrometer design is engineered to facilitate its use for measurement of the temperature of small, falling samples in a microgravity materials processing experiment using a 100 meter long drop tube. Because the samples are small and move rapidly through the field of view of the pyrometer, the optical power budget of the detection system is severly limited. Strategies for overcoming this limitation are discussed
Nonmonotonic energy harvesting efficiency in biased exciton chains
We theoretically study the efficiency of energy harvesting in linear exciton
chains with an energy bias, where the initial excitation is taking place at the
high-energy end of the chain and the energy is harvested (trapped) at the other
end. The efficiency is characterized by means of the average time for the
exciton to be trapped after the initial excitation. The exciton transport is
treated as the intraband energy relaxation over the states obtained by
numerically diagonalizing the Frenkel Hamiltonian that corresponds to the
biased chain. The relevant intraband scattering rates are obtained from a
linear exciton-phonon interaction. Numerical solution of the Pauli master
equation that describes the relaxation and trapping processes, reveals a
complicated interplay of factors that determine the overall harvesting
efficiency. Specifically, if the trapping step is slower than or comparable to
the intraband relaxation, this efficiency shows a nonmonotonic dependence on
the bias: it first increases when introducing a bias, reaches a maximum at an
optimal bias value, and then decreases again because of dynamic (Bloch)
localization of the exciton states. Effects of on-site (diagonal) disorder,
leading to Anderson localization, are addressed as well.Comment: 9 pages, 6 figures, to appear in Journal of Chemical Physic
Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics
The anharmonic lattice dynamics of rock-salt thermoelectric compounds SnTe
and PbTe are investigated with inelastic neutron scattering (INS) and
first-principles calculations. The experiments show that, surprisingly,
although SnTe is closer to the ferroelectric instability, phonon spectra in
PbTe exhibit a more anharmonic character. This behavior is reproduced in
first-principles calculations of the temperature-dependent phonon self-energy.
Our simulations reveal how the nesting of phonon dispersions induces prominent
features in the self-energy, which account for the measured INS spectra and
their temperature dependence. We establish that the phase-space for
three-phonon scattering processes, rather than just the proximity to the
lattice instability, is the mechanism determining the complex spectrum of the
transverse-optical ferroelectric mode
Measurement of transparency ratios for protons from short-range correlated pairs
Nuclear transparency, Tp(A), is a measure of the average probability for a
struck proton to escape the nucleus without significant re-interaction.
Previously, nuclear transparencies were extructed for quasi-elastic A(e,e'p)
knockout of protons with momentum below the Fermi momentum, where the spectral
functions are well known. In this paper we extract a novel observable, the
transparency ratio, Tp(A)/T_p(12C), for knockout of high-missing-momentum
protons from the breakup of short range correlated pairs (2N-SRC) in Al, Fe and
Pb nuclei relative to C. The ratios were measured at momentum transfer Q^2 >
1.5 (GeV/c)^2 and x_B > 1.2 where the reaction is expected to be dominated by
electron scattering from 2N-SRC. The transparency ratios of the knocked-out
protons coming from 2N-SRC breakup are 20 - 30% lower than those of previous
results for low missing momentum. They agree with Glauber calculations and
agree with renormalization of the previously published transparencies as
proposed by recent theoretical investigations. The new transparencies scale as
A^-1/3, which is consistent with dominance of scattering from nucleons at the
nuclear surface.Comment: 6 pages, 4 figure
- …
