Three-dimensional (3D) particle-in-cell (PIC) simulations are used to
investigate the interaction of ultrahigh intensity lasers (>1020
W/cm−2) with matter at overcritical densities. Intense laser pulses are
shown to penetrate up to relativistic critical density levels and to be
strongly self-focused during this process. The heat flux of the accelerated
electrons is observed to have an annular structure when the laser is tightly
focused, showing that a large fraction of fast electrons is accelerated at an
angle. These results shed light into the multi-dimensional effects present in
laser-plasma interactions of relevance to fast ignition of fusion targets and
laser-driven ion acceleration in plasmas.Comment: 2 pages, 1 figur