Nuclear transparency, Tp(A), is a measure of the average probability for a
struck proton to escape the nucleus without significant re-interaction.
Previously, nuclear transparencies were extructed for quasi-elastic A(e,e'p)
knockout of protons with momentum below the Fermi momentum, where the spectral
functions are well known. In this paper we extract a novel observable, the
transparency ratio, Tp(A)/T_p(12C), for knockout of high-missing-momentum
protons from the breakup of short range correlated pairs (2N-SRC) in Al, Fe and
Pb nuclei relative to C. The ratios were measured at momentum transfer Q^2 >
1.5 (GeV/c)^2 and x_B > 1.2 where the reaction is expected to be dominated by
electron scattering from 2N-SRC. The transparency ratios of the knocked-out
protons coming from 2N-SRC breakup are 20 - 30% lower than those of previous
results for low missing momentum. They agree with Glauber calculations and
agree with renormalization of the previously published transparencies as
proposed by recent theoretical investigations. The new transparencies scale as
A^-1/3, which is consistent with dominance of scattering from nucleons at the
nuclear surface.Comment: 6 pages, 4 figure