171 research outputs found

    Crack phase-field modeling of anisotropic rupture in fibrous soft tissues

    Get PDF
    The estimation of rupture in fibrous soft tissues has emerged as a central task in medical monitoring and risk assessment of diseases such as aortic dissection and aneurysms. In an attempt to address the challenges we have established a computational framework within the context of crack phase-field modeling and proposed an energy-based anisotropic failure criterion based on the distinction of isotropic and anisotropic material responses. Numerically we compare that criterion with other anisotropic failure criteria, in particular we analyze their capability to describe an admissible failure surface and how a crack can be propagated. A canonical rate-dependent setting of the crack phase-field model is formulated and solved in a weak sense by a standard Galerkin procedure featuring a one-pass operator-splitting algorithm on the temporal side. The anisotropic failure criteria are tested according to their performance on reflecting an admissible initiation, and crack propagation with an emphasis placed upon the aortic dissection

    A Chandra Survey of Supermassive Black Holes with Dynamical Mass Measurements

    Full text link
    We present Chandra observations of 12 galaxies that contain supermassive black holes with dynamical mass measurements. Each galaxy was observed for 30 ksec and resulted in a total of 68 point source detections in the target galaxies including supermassive black hole sources, ultraluminous X-ray sources, and extragalactic X-ray binaries. Based on our fits of the X-ray spectra, we report fluxes, luminosities, Eddington ratios, and slope of the power-law spectrum. Normalized to the Eddington luminosity, the 2--10 keV band X-ray luminosities of the SMBH sources range from 10810^{-8} to 10610^{-6}, and the power-law slopes are centered at 2\sim2 with a slight trend towards steeper (softer) slopes at smaller Eddington fractions, implying a change in the physical processes responsible for their emission at low accretion rates. We find 20 ULX candidates, of which six are likely (>90>90% chance) to be true ULXs. The most promising ULX candidate has an isotropic luminosity in the 0.3--10 keV band of 1.00.3+0.6×10401.0_{-0.3}^{+0.6} \times 10^{40} erg/s.Comment: Accepted by ApJ. 16 pages, 8 figures, 5 table

    A neural network based traffic-flow prediction model

    Get PDF
    Prediction of traffic-flow in Istanbul has been a great concern for planners of the city. Istanbul as being one of the most crowded cities in the Europe has a rural population of more than 10 million. The related transportation agencies in Istanbul continuously collect data through many ways thanks to improvements in sensor technology and communication systems which allow to more closely monitor the condition of the city transportation system. Since monitoring alone cannot improve the safety or efficiency of the system, those agencies actively inform the drivers continuously through various media including television broadcasts, internet, and electronic display boards on many locations on the roads. Currently, the human expertise is employed to judge traffic-flow on the roads to inform the public. There is no reliance on past data and human experts give opinions only on the present condition without much idea on what will be the likely events in the next hours. Historical events such as school-timings, holidays and other periodic events cannot be utilized for judging the future traffic-flows. This paper makes a preliminary attempt to change scenario by using artificial neural networks (ANNs) to model the past historical data. It aims at the prediction of the traffic volume based on the historical data in each major junction in the city. ANNs have given very encouraging results with the suggested approach explained in the paper. © Association for Scientific Research

    The Black Hole in the Compact, High-dispersion Galaxy NGC 1271

    Get PDF
    Located in the Perseus cluster, NGC 1271 is an early-type galaxy with a small effective radius of 2.2 kpc and a large stellar velocity dispersion of 276 km/s for its K-band luminosity of 8.9x10^{10} L_sun. We present a mass measurement for the black hole in this compact, high-dispersion galaxy using observations from the integral field spectrograph NIFS on the Gemini North telescope assisted by laser guide star adaptive optics, large-scale integral field unit observations with PPAK at the Calar Alto Observatory, and Hubble Space Telescope WFC3 imaging observations. We are able to map out the stellar kinematics on small spatial scales, within the black hole sphere of influence, and on large scales that extend out to four times the galaxy's effective radius. We find that the galaxy is rapidly rotating and exhibits a sharp rise in the velocity dispersion. Through the use of orbit-based stellar dynamical models, we determine that the black hole has a mass of (3.0^{+1.0}_{-1.1}) x 10^9 M_sun and the H-band stellar mass-to-light ratio is 1.40^{+0.13}_{-0.11} M_sun/L_sun (1-sigma uncertainties). NGC 1271 occupies the sparsely-populated upper end of the black hole mass distribution, but is very different from the Brightest Cluster Galaxies (BCGs) and giant elliptical galaxies that are expected to host the most massive black holes. Interestingly, the black hole mass is an order of magnitude larger than expectations based on the galaxy's bulge luminosity, but is consistent with the mass predicted using the galaxy's bulge stellar velocity dispersion. More compact, high-dispersion galaxies need to be studied using high spatial resolution observations to securely determine black hole masses, as there could be systematic differences in the black hole scaling relations between these types of galaxies and the BCGs/giant ellipticals, thereby implying different pathways for black hole and galaxy growth.Comment: accepted for publication in Ap

    A \u3cem\u3eChandra\u3c/em\u3e Survey of Supermassive Black Holes with Dynamical Mass Measurements

    Get PDF
    We present Chandra observations of 12 galaxies that contain supermassive black holes (SMBHs) with dynamical mass measurements. Each galaxy was observed for 30 ks and resulted in a total of 68 point-source detections in the target galaxies including SMBH sources, ultraluminous X-ray sources (ULXs), and extragalactic X-ray binaries. Based on our fits of the X-ray spectra, we report fluxes, luminosities, Eddington ratios, and slope of the power-law spectrum. Normalized to the Eddington luminosity, the 2-10 keV band X-ray luminosities of the SMBH sources range from 10-8 to 10-6, and the power-law slopes are centered at ~2 with a slight trend toward steeper (softer) slopes at smaller Eddington fractions, implying a change in the physical processes responsible for their emission at low accretion rates. We find 20 ULX candidates, of which 6 are likely (\u3e90% chance) to be true ULXs. The most promising ULX candidate has an isotropic luminosity in the 0.3-10 keV band of 1.0+0.6 - 0.3 × 1040 erg s-1

    A \u3cem\u3eChandra\u3c/em\u3e Survey of Supermassive Black Holes with Dynamical Mass Measurements

    Get PDF
    We present Chandra observations of 12 galaxies that contain supermassive black holes (SMBHs) with dynamical mass measurements. Each galaxy was observed for 30 ks and resulted in a total of 68 point-source detections in the target galaxies including SMBH sources, ultraluminous X-ray sources (ULXs), and extragalactic X-ray binaries. Based on our fits of the X-ray spectra, we report fluxes, luminosities, Eddington ratios, and slope of the power-law spectrum. Normalized to the Eddington luminosity, the 2-10 keV band X-ray luminosities of the SMBH sources range from 10-8 to 10-6, and the power-law slopes are centered at ~2 with a slight trend toward steeper (softer) slopes at smaller Eddington fractions, implying a change in the physical processes responsible for their emission at low accretion rates. We find 20 ULX candidates, of which 6 are likely (\u3e90% chance) to be true ULXs. The most promising ULX candidate has an isotropic luminosity in the 0.3-10 keV band of 1.0+0.6 - 0.3 × 1040 erg s-1

    Is There a Black Hole in NGC 4382?

    Full text link
    We present Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph observations of the galaxy NGC 4382 (M85) and axisymmetric models of the galaxy to determine mass-to-light ratio ( ##IMG## [http://ej.iop.org/icons/Entities/Upsi.gif] {Upsilon} V ) and central black hole mass ( M BH ). We find ##IMG## [http://ej.iop.org/icons/Entities/Upsi.gif] {Upsilon} V = 3.74 ± 0.1 M _ / L _ and M BH = 1.3 +5.2 – 1.2 _ 10 7 M _ at an assumed distance of 17.9 Mpc, consistent with no black hole. The upper limit, M BH < 9.6 _ 10 7 M _ (2_) or M BH < 1.4 _ 10 8 (3_), is consistent with the current M -_ relation, which predicts M BH = 8.8 _ 10 7 M _ at _ e = 182 km s –1 , but low for the current M - L relation, which predicts M BH = 7.8 _ 10 8 M _ at L V = 8.9 _ 10 10 L _, V . HST images show the nucleus to be double, suggesting the presence of a nuclear eccentric stellar disk, analogous to the Tremaine disk in M31. This conclusion is supported by the HST velocity dispersion profile. Despite the presence of this non-axisymmetric feature and evidence of a recent merger, we conclude that the reliability of our black hole mass determination is not hindered. The inferred low black hole mass may explain the lack of nuclear activity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90768/1/0004-637X_741_1_38.pd

    Dynamical Measurements of Black Hole Masses in Four Brightest Cluster Galaxies at 100 Mpc

    Full text link
    We present stellar kinematics and orbit superposition models for the central regions of four Brightest Cluster Galaxies (BCGs), based upon integral-field spectroscopy at Gemini, Keck, and McDonald Observatories. Our integral-field data span radii from < 100 pc to tens of kpc. We report black hole masses, M_BH, of 2.1 +/- 1.6 x 10^10 M_Sun for NGC 4889, 9.7 + 3.0 - 2.6 x 10^9 M_Sun for NGC 3842, and 1.3 + 0.5 - 0.4 x 10^9 M_Sun for NGC 7768. For NGC 2832 we report an upper limit of M_BH < 9 x 10^9 M_Sun. Stellar orbits near the center of each galaxy are tangentially biased, on comparable spatial scales to the galaxies' photometric cores. We find possible photometric and kinematic evidence for an eccentric torus of stars in NGC 4889, with a radius of nearly 1 kpc. We compare our measurements of M_BH to the predicted black hole masses from various fits to the relations between M_BH and stellar velocity dispersion, luminosity, or stellar mass. The black holes in NGC 4889 and NGC 3842 are significantly more massive than all dispersion-based predictions and most luminosity-based predictions. The black hole in NGC 7768 is consistent with a broader range of predictions.Comment: 24 pages, 18 figures. Accepted for publication in Ap

    Observational selection effects and the M-sigma relation

    Full text link
    We examine the possibility that the observed relation between black-hole mass and host-galaxy stellar velocity dispersion (the M-sigma relation) is biased by an observational selection effect, the difficulty of detecting a black hole whose sphere of influence is smaller than the telescope resolution. In particular, we critically investigate recent claims that the M-sigma relation only represents the upper limit to a broad distribution of black-hole masses in galaxies of a given velocity dispersion. We find that this hypothesis can be rejected at a high confidence level, at least for the early-type galaxies with relatively high velocity dispersions (median 268 km/s) that comprise most of our sample. We also describe a general procedure for incorporating observational selection effects in estimates of the properties of the M-sigma relation. Applying this procedure we find results that are consistent with earlier estimates that did not account for selection effects, although with larger error bars. In particular, (i) the width of the M-sigma relation is not significantly increased; (ii) the slope and normalization of the M-sigma relation are not significantly changed; (iii) most or all luminous early-type galaxies contain central black holes at zero redshift. Our results may not apply to late-type or small galaxies, which are not well-represented in our sample.Comment: 8 pages, ApJ accepte
    corecore