We present Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph observations of the galaxy NGC 4382 (M85) and axisymmetric models of the galaxy to determine mass-to-light ratio ( ##IMG## [http://ej.iop.org/icons/Entities/Upsi.gif] {Upsilon} V ) and central black hole mass ( M BH ). We find ##IMG## [http://ej.iop.org/icons/Entities/Upsi.gif] {Upsilon} V = 3.74 ± 0.1 M _ / L _ and M BH = 1.3 +5.2 – 1.2 _ 10 7 M _ at an assumed distance of 17.9 Mpc, consistent with no black hole. The upper limit, M BH < 9.6 _ 10 7 M _ (2_) or M BH < 1.4 _ 10 8 (3_), is consistent with the current M -_ relation, which predicts M BH = 8.8 _ 10 7 M _ at _ e = 182 km s –1 , but low for the current M - L relation, which predicts M BH = 7.8 _ 10 8 M _ at L V = 8.9 _ 10 10 L _, V . HST images show the nucleus to be double, suggesting the presence of a nuclear eccentric stellar disk, analogous to the Tremaine disk in M31. This conclusion is supported by the HST velocity dispersion profile. Despite the presence of this non-axisymmetric feature and evidence of a recent merger, we conclude that the reliability of our black hole mass determination is not hindered. The inferred low black hole mass may explain the lack of nuclear activity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90768/1/0004-637X_741_1_38.pd