74 research outputs found

    The stable isotope ecology of mycalesine butterflies: implications for plant–insect co-evolution

    Get PDF
    Functional Ecology © 2016 British Ecological Society One of the most dramatic examples of biome shifts in the geological record is the rapid replacement of C 3  vegetation by C 4 grasses in (sub-) tropical regions during the Late Miocene–Pliocene. Climate-driven biome shifts of this magnitude are expected to have a major impact on diversification and ecological speciation, especially in grazing taxa. Mycalesine butterflies are excellent candidates to explore the evolutionary impact of these C 3 /C 4 shifts on insect grazer communities. Mycalesine butterflies feed on grasses as larvae, have radiated spectacularly and occur in almost all extant habitats across the Old World tropics. However, at present, we lack a comprehensive understanding of the larval ecology of these butterflies and this hampers investigations of co-evolutionary patterns among the geographically parallel radiations of mycalesine butterflies and the remarkable evolutionary history of their host plants. By conducting several experiments under defined environmental conditions, we demonstrate that the feeding history of mycalesine larvae on C 3 and C 4 grasses can be traced by analysing δ 13 C in the organic material of the adult exoskeleton, while values of δ 18 O in the adult reflect atmospheric humidity during larval development. To show the power of these isotopic proxies for ecological studies, we analysed the isotopic composition of organic material obtained from adult butterflies sampled in two extensive longitudinal surveys. We observed strong associations among the larval ecology, habitat preferences of the adult butterflies and patterns of seasonality, such that mycalesine species that inhabit open environments are more opportunistic in their host plant choice but utilize C 3 grasses more frequently during the dry season. Crucially, the ability to process the less palatable C 4 grasses appears to be phylogenetically clustered within mycalesine species, suggesting that novel feeding adaptations may have evolved in response to the ecological dominance of C 4 grasses in open savanna habitats. A lay summary is available for this article

    Geographic origin and migration phenology of European red admirals (Vanessa atalanta) as revealed by stable isotopes.

    Get PDF
    BACKGROUND: Long-distance migration has evolved multiple times in different animal taxa. For insect migrants, the complete annual migration cycle covering several thousand kilometres, may be performed by several generations, each migrating part of the distance and reproducing. Different life-cycle stages and preferred orientation may thus, be found along the migration route. For migrating red admirals (Vanessa atalanta) it has been questioned if they reproduce in the most northern part of the range. Here we present migration phenology data from a two-year time series of migrating red admirals captured at Rybachy, Kaliningrad, in the northern part of Europe investigating time for migration, life-history stage (migration, reproduction) as well as site of origin in individual butterflies. METHODS: Red admirals were captured daily at a coastal site during spring, summer and autumn in 2004 and 2005. For the sampled individuals, reproductive status and fuel content were estimated by visual inspection, and hydrogen isotopes (δ 2H) were analysed in wing samples. δ 2H values was compared with samples from two nearby reference sites in Estonia and Poland. RESULTS: Analysis of hydrogen isotopes (δ 2H) in red admiral wings showed that the spring cohort were of a southerly origin, while those caught in August or later in the autumn were from the local region or areas further to the north. All females caught during spring had developing eggs in their abdomen, but no eggs were found in late summer/autumn. There was a male-biased sex ratio during autumn and a difference in lipid content between years. When comparing the isotopic data with inland nearby locations, it was clear that the range of δ 2H values (- 181 to - 78) was wider at Rybachy as compared to the two reference sites in Estonia and Poland (- 174 to - 100). CONCLUSIONS: During spring, migratory female red admirals arrived from the south and were ready to reproduce, while the autumn passage mainly engaged local and more northern individuals carrying large fuel deposits in preparation for long-distance migration. The phenology data suggest that individuals select to migrate in favourable weather conditions and that numbers may differ between years. Future studies should focus on individual sampling at a wide range of sites to reveal differential migration strategies and timing of migration between sexes and populations of migrating butterflies

    Whole-chromosome hitchhiking driven by a male-killing endosymbiont

    Get PDF
    Data Availability Statement: Raw genomic data and assemblies are available from GenBank (project accession numbers PRJNA448181 and PRJEB35880, and individual sample accessions are provided in S9 Table). All processed data files underlying all figures are available from the Dryad digital repository: https://doi.org/10.5061/dryad. 9kd51c5d0. Scripts used for data analysis are available from https://github.com/simonhmartin/ genomics_general.Neo-sex chromosomes are found in many taxa, but the forces driving their emergence and spread are poorly understood. The female-specific neo-W chromosome of the African monarch (or queen) butterfly Danaus chrysippus presents an intriguing case study because it is restricted to a single ‘contact zone’ population, involves a putative colour patterning supergene, and co-occurs with infection by the the male-killing endosymbiont Sprioplasma. We investigated the origin and evolution of this system using whole genome sequencing. We first identify the ‘BC supergene’, a large region of suppressed recombination that links two colour patterning loci. Association analysis suggests that the genes yellow and arrow control the forewing colour pattern differences between D. chrysippus subspecies. We then show that the same chromosome has recently formed a neo-W that has spread through the contact zone within ~2200 years. We also assembled the genome of the male-killing Spiroplasma, and find that it shows perfect genealogical congruence with the neo-W, suggesting that the neo-W has hitchhiked to high frequency as the male killer has spread through the population. The complete absence of female crossing-over in the Lepidoptera causes whole-chromosome hitchhiking of a single neo-W haplotype, carrying a single allele of the BC supergene, and dragging multiple non-synonymous mutations to high frequency. This has created a population of infected females that all carry the same recessive colour patterning allele, making the phenotypes of each successive generation highly dependent on uninfected male immigrants. Our findings show how hitchhiking can occur between the unlinked genomes of host and endosymbiont, with dramatic consequences.Biotechnology & Biological Sciences Research Council (BBSRC

    Mitogenomics of ‘old world Acraea’ butterflies reveals a highly divergent ‘Bematistes’

    No full text
    Afrotropical Acraeini butterflies provide a fascinating potential model system contrast with the Neotropical Heliconiini, yet their phylogeny remains largely unexplored by molecular methods and their generic level nomenclature is still contentious. To test the potential of mitogenomes in a simultaneous analysis of the radiation, we sequenced the full mitochondrial genomes of 19 African species. Analyses show the potential of mitogenomic phylogeny reconstruction in this group. Inferred relationships are largely congruent with a previous multilocus study. We confirm a monophyletic Telchinia including the Asiatic Pareba with a complicated paraphylum, traditional (sub-)genus Acraea, toward the base. The results suggest that several proposed subgenera and some species groups within Telchinia are not monophyletic, while two other (sub-) genera could possibly be combined. Telchinia was recovered without strong support as sister to the potentially interesting system of distasteful model butterflies Bematistes, a name that is suppressed in some treatments. Surprisingly, we find that this taxon has remarkably divergent mitogenomes and unexpected synapomorphic tRNA rearrangements. These gene order changes, combined with evidence for deviating dN/dS ratios and evidence for episodal diversifying selection, suggest that the ancestral Bematistes mitogenome has had a turbulent past. Our study adds genetic support for treating this clade as a distinct genus, while the alternative option, adopted by some authors, of Acraea being equivalent to Acraeini merely promotes redundancy. We pave the way for more detailed mitogenomic and multi-locus molecular analyses which can determine how many genera are needed (possibly at least six) to divide Acraeini into monophyletic groups that also facilitate communication about their biology

    Pheromone variability and evolution in the butterfly genus Bicyclus, and implication in its diversification

    Full text link
    The evolution of olfactive communication in generating reproductive isolation among species remains poorly understood (Smadja & Butlin 2009). In Lepidoptera, studies have mainly focused on long-distance pheromones produced by moths. Moth sex pheromones have been shown to display inter-population variation (e.g. Tòth et al. 1992, McElfresh & Millar 2008 and ref. within, Groot et al. 2009) and to be involved in interspecific isolation (e.g. Löfstedt et al. 1991, Groot et al. 2006). In butterflies, the few existing studies on sex pheromones have mainly focused on the identification of the male specific compounds and the demonstration of their behavioural activity in courtship (e.g. Grula et al. 1980, Nieberding et al. 2008, Yildizhan et al. 2009), but have failed so far to highlight a role in reproductive isolation (Friberg et al. 2008). In the species-rich Bicyclus genus Kirby, 1871 (Nymphalidae, Satyrinae) the structures producing the pheromones, i.e. the androconia, are key characters to discriminate among species (Condamin 1973). In B. anynana (Butler, 1879), the male sex pheromone (MSP) has been shown to play a role in mate choice (Costanzo & Monteiro 2007, Nieberding et al. 2008), to be heritable, and particular ratios of the pheromone components are under strong sexual selection (Nieberding et al, unpubl. data). Therefore, we expect that pheromone evolution is responsible for reproductive isolation and diversification in this butterfly group. In this framework, our research project aims at understanding the evolution of MSP at the interspecific level across the Bicyclus genus and specifically at testing their potential role in the speciation process. Potential MSP of several species across the Bicyclus genus have been identified by gas chromatography and mass spectrometry. Observed differences in pheromone composition between species are compared in a phylogenetic framework to the molecular tree of the species (following Oliver et al. 2009). We expect the evolutionary rate of MSP to be unlinked to the molecular tree if MSP are under sexual selection across the genus (i.e. saltational evolution following Symonds & Elgar 2004, Shirangi et al. 2009). Moreover, if MSP generated reproductive isolation between species in a “reinforcement” process, we expect higher differences of MSP composition between sympatric species than between allopatric species and an increase of this pattern for younger species compared to older species (Lukhtanov et al. 2006)

    Wnt Gene Expression During Early Embryogenesis in the Nymphalid Butterfly Bicyclus anynana

    Get PDF
    Wnt signaling pathways are involved in many important cellular processes including proliferation and differentiation. Wnt ligands are released by source cells and signal to target cells by binding to the Frizzled receptor family and triggering changes in downstream target gene expression. Wnt signaling appeared at the base of metazoans and there was an early expansion in the repertoire of Wnt ligands to the 13 known subfamilies. However, little is known about functionality of these ligands in many animal lineages. Understanding the roles of these important signaling molecules in a wider range of animals is crucial to understand the regulation and evolution of cell fate during development and how this can lead to diversification. Here, we analyzed the Wnt repertoire among lepidopterans, where the embryological functionality of these ligands is understudied compared to other insect orders. To be able to explore Wnt gene roles during butterfly embryogenesis we first established a staging system for the butterfly model, Bicyclus anynana, and assayed the expression pattern of all eight lepidopteran Wnt genes during early butterfly development. We detected expression of Wnt1, Wnt10, and WntA in several expression domains, such as segmental stripes as well as expression of Wnt7 in the nervous system and Wnt11 in several head structures. Overall, our study provides, a basis for future research into butterfly embryogenesis and much needed new insights into the potential roles of Wnt genes in specifying cell fate in these animals as well as how this compares to other animals

    First records of Hypolycaena anara Larsen, 1986 from Cameroon (Lepidoptera: Lycaenidae)

    No full text
    The species Hypolycaena anara Larsen, 1986, is reported as a new record for Cameroon, together with a description of two new montane localities. We also describe two previously unpublished localities of the species in Nigeria. Potential contribution of the discovery of this hilly-savannah butterfly in the Gulf of Guinea Highlands to the recent debate on the local submontane habitat history is discussed

    Differentiation in putative male sex pheromone components across and within populations of the African butterfly Bicyclus anynana as a potential driver of reproductive isolation

    Get PDF
    Sexual traits are often the most divergent characters among closely related species, suggesting an important role of sexual traits in speciation. However, to prove this, we need to show that sexual trait differences accumulate before or during the speciation process, rather than being a consequence of it. Here, we contrast patterns of divergence among putative male sex pheromone (pMSP) composition and the genetic structure inferred from variation in the mitochondrial cytochrome oxidase 1 and nuclear CAD loci in the African butterfly Bicyclus anynana (Butler, 1879) to determine whether the evolution of “pheromonal dialects” occurs before or after the differentiation process. We observed differences in abundance of some shared pMSP components as well as differences in the composition of the pMSP among B. anynana populations. In addition, B. anynana individuals from Kenya displayed differences in the pMSP composition within a single population that appeared not associated with genetic differences. These differences in pMSP composition both between and within B. anynana populations were as large as those found between different Bicyclus species. Our results suggest that “pheromonal dialects” evolved within and among populations of B. anynana and may therefore act as precursors of an ongoing speciation process
    corecore