122 research outputs found

    Kinetic modeling of microscopic processes during electron cyclotron resonance microwave plasma-assisted molecular beam epitaxial growth of GaN/GaAs-based heterostructures

    Get PDF
    Microscopic growth processes associated with GaN/GaAs molecular beam epitaxy (MBE) are examined through the introduction of a first-order kinetic model. The model is applied to the electron cyclotron resonance microwave plasma-assisted MBE (ECR-MBE) growth of a set of delta-GaNyAs1–y/GaAs strained-layer superlattices that consist of nitrided GaAs monolayers separated by GaAs spacers, and that exhibit a strong decrease of y with increasing T over the range 540–580 °C. This y(T) dependence is quantitatively explained in terms of microscopic anion exchange, and thermally activated N surface-desorption and surface-segregation processes. N surface segregation is found to be significant during GaAs overgrowth of GaNyAs1–y layers at typical GaN ECR-MBE growth temperatures, with an estimated activation energy Es ~ 0.9 eV. The observed y(T) dependence is shown to result from a combination of N surface segregation/desorption processes

    The why not the what : critical reflection in an atypical service-learning course

    Full text link
    Service-learning in higher education is fundamentally about facilitating connections among service, learning, teaching, and reflection to create a powerful and engaging pedagogy. Inherent in that is also connecting students, faculty, staff, and the community for mutual benefit. In 2010 and 2011, a series of earthquakes destroyed the city of Christchurch, New Zealand and a resulting example of mutually beneficial community service at the University of Canterbury (UC) emerged. Over 9,000 UC students organized themselves as the Student Volunteer Army (SVA) to provide immediate post-quake relief and this served as a catalyst for the creation of a service-learning course, CHCH101: Rebuilding Christchurch, at UC. Because this was an atypical model for a service-learning course – service that occurred prior to the course – it has Paper presented an opportunity to consider the roles of service and learning in a rather discrete way with a particular emphasis on evaluating the student outcome of critical reflection. What, then, might be an alternative model for service-learning where the service has been completed prior to the course? Further, what would the emphasis of such a course be and would the course achieve similar outcomes as the typical design, particularly with regard to critical reflection? On these questions, the literature is lacking and our case study of an atypical service-learning course, CHCH101, provides a contribution. Quantitative data for the case study was collected by administering Kember’s (2000) survey of critical reflection before and after the course. An analysis of this quantitative data strongly suggests that students’ ability to think and reflect critically improved after the course. Qualitative data for the case study was collected from students’ assignments and reflections during the course. The quantitative findings were corroborated and more thickly described by the qualitative data. This qualitative data indicates that students’ improvement in critical reflection ability occurred because of discernible and progressive shifts in their thinking about service through three distinct, and recurring, stages: 1) an initial assurance that their service efforts were inherently and unquestionably good, 2) a subsequent self-critique of that assurance, often resulting in guilt, and 3) a temporary conclusion that service is complex and nuanced

    Bumblebees express consistent, but flexible, speed-accuracy tactics under different levels of predation threat

    Get PDF
    A speed-accuracy trade-off (SAT) in behavioural decisions is known to occur in a wide range of vertebrate and invertebrate taxa. Accurate decisions often take longer for a given condition, while fast decisions can be inaccurate in some tasks. Speed-accuracy tactics are known to vary consistently among individuals, and show a degree of flexibility during colour discrimination tasks in bees. Such individual flexibility in speed-accuracy tactics is likely to be advantageous for animals exposed to fluctuating environments, such as changes in predation threat. We therefore test whether individual speed-accuracy tactics are fixed or flexible under different levels of predation threat in a model invertebrate, the bumblebee Bombus terrestris. The flexibility of speed-accuracy tactics in a foraging context was tested in the laboratory using a “meadow” of artificial flowers harbouring “robotic” crab spider predators. We found that while the ranking of bees along the speed and accuracy continuums was consistent across two levels of predation threat, there was some flexibility in the tactics used by individual bees – most bees became less accurate at colour discrimination when exposed to predation threat when flower types were rewarding. The relationship between decision speed and accuracy was influenced by predator detectability and the risk associated with making incorrect choices during the colour discrimination task. Predator crypsis resulted in a breakdown in the relationship between speed and accuracy, especially when making an incorrect floral choice incurred a distasteful quinine punishment. No single speed-accuracy tactic was found to be optimal in terms of foraging efficiency under either predation threat situation. However, bees that made faster decisions achieved higher nectar collection rates in predator free situations, while accurate bees achieved higher foraging rates under predation threat. Our findings show that while individual bees remain relatively consistent in terms of whether they place greater emphasis on speed or accuracy under predation threat, they can respond flexibly to the additional time costs of detecting predators

    Eco-evolutionary effects on population recovery following catastrophic disturbance

    Get PDF
    Fine-scale genetic diversity and contemporary evolution can theoretically influence ecological dynamics in the wild. Such eco-evolutionary effects might be particularly relevant to the persistence of populations facing acute or chronic environmental change. However, experimental data on wild populations is currently lacking to support this notion. One way that ongoing evolution might influence the dynamics of threatened populations is through the role that selection plays in mediating the ‘rescue effect’, the ability of migrants to contribute to the recovery of populations facing local disturbance and decline. Here, we combine experiments with natural catastrophic events to show that ongoing evolution is a major determinant of migrant contributions to population recovery in Trinidadian guppies (Poecilia reticulata). These eco-evolutionary limits on migrant contributions appear to be mediated by the reinforcing effects of natural and sexual selection against migrants, despite the close geographic proximity of migrant sources. These findings show that ongoing adaptive evolution can be a double-edged sword for population persistence, maintaining local fitness at a cost to demographic risk. Our study further serves as a potent reminder that significant evolutionary and eco-evolutionary dynamics might be at play even where the phenotypic status quo is largely maintained generation to generation

    Interactions between the night time valley-wind system and a developing cold-air pool

    Get PDF
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in Boundary-Layer Meteorology following peer review. The version of record [Arduini, G., Staquet, C & Chemel, C., ‘Interactions between the night time valley-wind system and a developing cold-air pool’, Boundary-Layer Meteorol (2016) 161:1 (49-72), first published online June 2, 2016, is available at Springer online at doi: 10.1007/s10546-016-0155-8The Weather Research and Forecast (WRF) numerical model is used to characterize the influence of a thermally-driven down-valley flow on a developing cold-air pool in an idealized alpine valley decoupled from the atmosphere above. Results for a three-dimensional (3D) valley, which allows for the formation of a down-valley flow, and for a two-dimensional (2D) valley, where the formation of a down-valley flow is inhibited, are analyzed and compared. A key result is that advection leads to a net cooling in the 2D valley and to a warming in the 3D valley, once the down-valley flow is fully developed. This difference stems from the suppression of the slope-flow induced upward motions over the valley centre in the 3D valley. As a result, the downslope flows develop a cross-valley circulation within the cold-air pool, the growth of the cold-air pool is reduced and the valley atmosphere is generally warmer than in the 2D valley. A quasi-steady state is reached for which the divergence of the down-valley flow along the valley is balanced by the convergence of the downslope flows at the top of the cold-air pool, with no net contribution of subsiding motions far from the slope layer. More precisely, the inflow of air at the top of the cold-air pool is found to be driven by an interplay between the return flow from the plain region and subsidence over the plateaux. Finally, the mechanisms that control the structure of the cold-air pool and its evolution are found to be independent of the valley length as soon as the quasi-steady state is reached and the down-valley flow is fully developed.Peer reviewedFinal Accepted Versio

    Physiological Costs of Repetitive Courtship Displays in Cockroaches Handicap Locomotor Performance

    Get PDF
    Courtship displays are typically thought to have evolved via female choice, whereby females select mates based on the characteristics of a display that is expected to honestly reflect some aspect of the male’s quality. Honesty is typically enforced by mechanistic costs and constraints that limit the level at which a display can be performed. It is becoming increasingly apparent that these costs may be energetic costs involved in the production of dynamic, often repetitive displays. A female attending to such a display may thus be assessing the physical fitness of a male as an index of his quality. Such assessment would provide information on his current physical quality as well as his ability to carry out other demanding activities, qualities with which a choosy female should want to provision her offspring. In the current study we use courtship interactions in the Cuban burrowing cockroach, Byrsotria fumigata to directly test whether courtship is associated with a signaler’s performance capacity. Males that had produced courtship displays achieved significantly lower speeds and distances in locomotor trials than non-courting control males. We also found that females mated more readily with males that produced a more vigorous display. Thus, males of this species have developed a strategy where they produce a demanding courtship display, while females choose males based on their ability to produce this display. Courtship displays in many taxa often involve dynamic repetitive actions and as such, signals of stamina in courtship may be more widespread than previously thought
    corecore