2,664 research outputs found

    T2{}^2K2{}^2: The Twitter Top-K Keywords Benchmark

    Full text link
    Information retrieval from textual data focuses on the construction of vocabularies that contain weighted term tuples. Such vocabularies can then be exploited by various text analysis algorithms to extract new knowledge, e.g., top-k keywords, top-k documents, etc. Top-k keywords are casually used for various purposes, are often computed on-the-fly, and thus must be efficiently computed. To compare competing weighting schemes and database implementations, benchmarking is customary. To the best of our knowledge, no benchmark currently addresses these problems. Hence, in this paper, we present a top-k keywords benchmark, T2{}^2K2{}^2, which features a real tweet dataset and queries with various complexities and selectivities. T2{}^2K2{}^2 helps evaluate weighting schemes and database implementations in terms of computing performance. To illustrate T2{}^2K2{}^2's relevance and genericity, we successfully performed tests on the TF-IDF and Okapi BM25 weighting schemes, on one hand, and on different relational (Oracle, PostgreSQL) and document-oriented (MongoDB) database implementations, on the other hand

    Popular critiques of consultancy and a politics of management learning?

    Get PDF
    In this short article, I argue that popular business discourse on the role of management consultancy in the promotion and translation of management ideas is often critical, informed by more or less implicit ethical and political concerns with employee security, equity, openness and the transparency and legitimacy of responsibility. These concerns are, in part, ‘sayable’ because their object is seen as a scapegoat for management. Nevertheless, combined with the popular form of their expression, they can support and legitimize critical studies of management learning, a discipline which otherwise has become overly concerned with processual and situational phenomena at the expense of broader political dynamics and of the content and consequences of management and management knowledg

    Recent key developments in nanoscale reliability and failure analysis techniques for advanced nanoelectronics devices

    Get PDF
    Last decade has witnessed an aggressive scaling of CMOS technology nodes pushing it all the way down to sub-10nm and this scaling trend looks positive for the next two-three nodes as well down to 5nm. This push for scaling of the technology node has created a need for using material characterization techniques with (sub)nanometer probe resolution to characterize these advanced nanoelectronic devices - to observe and understand the underlying thermodynamics and kinetics of the physical phenomenon at the nanometer scale in real-time. Among these advanced characterization techniques, transmission election microscopy (TEM) and scanning probe microscopy (SPM), as well as the techniques derived from these, have become critical and instrumental to failure analysis and for evaluation of key design metrics for reliability studies. In this work, we present the different case studies using these two techniques which we have employed for studying both advanced logic and memory devices. High resolution TEM (HRTEM) has been used for both RRAM and gate oxide reliability studies due to its multiple compositional characterization capabilities with sub-nm resolution. TEM can routinely achieve a resolution around 0.1nm and thus can provide tremendous information related to structure (Diffraction Pattern) and composition (Electron Energy Loss Spectroscopy). Ex-situ TEM techniques (supported by Focused Ion Beam (FIB)) have allowed us to perform diverse electrical and thermal testing on devices. We have found concrete evidence of FinFET device degradation recently [1]. We have also employed in-situ TEM techniques (facilitated by scanning tunneling microscopy (STM) and the thermal holder) to observe the degradation behavior of metal-dielectric stacks in real-time [2]. The in-situ TEM technique has provided insight into the direct and solid time sequential evolution of failure behavior in RRAM devices. Additionally, 3D tomography characterization of the defect and failure spot has been acquired by tilting the sample and collecting the sequential images at different angles [3]. This technique of 3D tomography is a very powerful one for defect reorganization and for root cause analysis of failure mechanism. Conductive atomic force microscopy (CAFM) and STM are two techniques, belonging to a large pool of available SPM tools, which we have used for breakdown studies in ultra-thin HfO2 and other high-Îș dielectrics as well as multi-layered fluorinated graphene (FG) stacks. With a resolution, down to ~10nm and ~0.1nm for CAFM and STM respectively under ultra-high vacuum (UHV) conditions, we have applied these tools to measure electrical properties (I-V and dI/dV) at grain and grain boundary spots in ultra-thin polycrystalline HfO2 dielectrics [4] as well as to understand the breakdown mechanism in FG stacks [5]. We have also explored the local spectroscopy capabilities (of both STM and CAFM) for the measurement of random telegraph noise (RTN) in blanket HfO2 films. Using bias dependent RTN measurements, it has been possible to quantify the position of the defect in the probed location of the dielectric. Interestingly, these dielectric breakdowns and RTN measurements at the nanoscale have also provided experimental evidence of defect clustering in polycrystalline dielectrics and possible existence of the metastable nature of oxygen vacancy (VO) defect in HfO2 respectively [6]. CAFM has also been explored to study the role of VO in HfO2 based RRAM stacks for ultra-low power memory applications where the signature of sub-quantum conductance based resistive switching has been experimentally observed [7]. We strongly believe that these tools and techniques would play an indispensable role in unveiling the underlying physics of the nanoscale physical phenomenon for existing as well as emerging materials and 2D/3D devices. References: [1] S. Mei et al., IEDM (2016). [2] K. L. Pey et al., IRPS (2010). [3] S. Mei et al., Unpublished. [4] K. Shubhakar et al., Micro. Engineering (2013). [5] A. Ranjan et al., IRPS (2017, Accepted). [6] A. Ranjan et al., IRPS (2016

    Decomposable representations and Lagrangian submanifolds of moduli spaces associated to surface groups

    Full text link
    In this paper, we construct a Lagrangian submanifold of the moduli space associated to the fundamental group of a punctured Riemann surface (the space of representations of this fundamental group into a compact connected Lie group). This Lagrangian submanifold is obtained as the fixed-point set of an anti-symplectic involution defined on the moduli space. The notion of decomposable representation provides a geometric interpretation of this Lagrangian submanifold

    Phase Mixing of Alfvén Waves Near a 2D Magnetic Null Point

    Get PDF
    The propagation of linear Alfvén wave pulses in an inhomogeneous plasma near a 2D coronal null point is investigated. When a uniform plasma density is considered, it is seen that an initially planar Alfvén wavefront remains planar, despite the varying equilibrium Alfvén speed, and that all the wave collects at the separatrices. Thus, in the non-ideal case, these Alfvénic disturbances preferentially dissipate their energy at these locations. For a non-uniform equilibrium density, it is found that the Alfvén wavefront is significantly distorted away from the initially planar geometry, inviting the possibility of dissipation due to phase mixing. Despite this however, we conclude that for the Alfvén wave, current density accumulation and preferential heating still primarily occur at the separatrices, even when an extremely non-uniform density profile is considered

    Genetic resistance determinants to fusidic acid and chlorhexidine in variably susceptible staphylococci from dogs

    Get PDF
    Abstract Background Concern exists that frequent use of topically-applied fusidic acid (FA) and chlorhexidine (CHX) for canine pyoderma is driving clinically relevant resistance, despite rare description of FA and CHX genetic resistance determinants in canine-derived staphylococci. This study aimed to determine minimum inhibitory concentrations (MICs) and investigate presence of putative resistance determinants for FA and CHX in canine-derived methicillin-resistant (MR) and -susceptible (MS) staphylococci. Plasmid-mediated resistance genes (fusB, fusC, fusD, qacA/B, smr; PCR) and MICs (agar dilution) of FA and CHX were investigated in 578 staphylococci (50 MR S. aureus [SA], 50 MSSA, 259 MR S. pseudintermedius [SP], 219 MSSP) from Finland, U.S.A., North (NUK) and South-East U.K. (SEUK) and Germany. In all isolates with FA MIC ≄64 mg/L (n = 27) fusA and fusE were amplified and sequenced. Results FA resistance determinants (fusA mutations n = 24, fusB n = 2, fusC n = 36) were found in isolates from all countries bar U.S.A. and correlated with higher MICs (≄1 mg/L), although 4 SP isolates had MICs of 0.06 mg/L despite carrying fusC. CHX MICs did not correlate with qacA/B (n = 2) and smr (n = 5), which were found in SEUK SA, and SP from NUK and U.S.A. Conclusions Increased FA MICs were frequently associated with fusA mutations and fusC, and this is the first account of fusB in SP. Despite novel description of qacA/B in SP, gene presence did not correlate with CHX MIC. Selection pressure from clinical use might increase prevalence of these genetic determinants, but clinical significance remains uncertain in relation to high skin concentrations achieved by topical therapy

    Searching for the earliest galaxies in the 21 cm forest

    Get PDF
    We use a model developed by Xu et al. (2010) to compute the 21 cm line absorption signatures imprinted by star-forming dwarf galaxies (DGs) and starless minihalos (MHs). The method, based on a statistical comparison of the equivalent width (W_\nu) distribution and flux correlation function, allows us to derive a simple selection criteria for candidate DGs at very high (z >= 8) redshift. We find that ~ 18% of the total number of DGs along a line of sight to a target radio source (GRB or quasar) can be identified by the condition W_\nu < 0; these objects correspond to the high-mass tail of the DG distribution at high redshift, and are embedded in large HII regions. The criterion W_\nu > 0.37 kHz instead selects ~ 11% of MHs. Selected candidate DGs could later be re-observed in the near-IR by the JWST with high efficiency, thus providing a direct probe of the most likely reionization sources.Comment: 8 pages, 3 figures. Accepted for publication in Science in China Series

    Development of a 3D Ni-Mn binary oxide anode for energy-efficient electro-oxidation of organic pollutants

    Full text link
    The depletion of clean water resources and the consequent accumulation of contaminants in aquatic systemsmust be urgently addressed by means of innovative solutions. Electro-oxidation (EO) is considered a promisingtechnology, prized for its versatility and eco-friendliness. However, the excessively high prices and the toxicityassociated with some of the materials currently employed for EO impede its broader application. This studyintroduces cost-effective Ni-Mn binary oxide anodes prepared on Ni foam (NF) substrate. A scalable synthesisroute that enables a 35-fold increase in the production of active material through a single optimization step hasbeen devised. The synthesized binary oxide material underwent electrochemical characterization, and itseffectiveness was assessed in an electrochemical flow-through cell, benchmarked against single Ni or Mn oxidesand more conventional alternatives like boron-doped diamond (BDD) and dimensionally-stable anode (DSA). Thenovel binary oxide anode demonstrated exceptional performance, achieving complete removal of phenol at verylow current density of 5 mA cm-2, along with an 80% of chemical oxygen demand (COD) decay within only60 min. The NF/NiMnO3 anode outperformed the BDD and DSA when using comparable projected surface areas,owing to its high porosity and ability to produce hydroxyl radicals, as confirmed from the degradation profiles inthe presence of radical scavengers. Furthermore, GC/MS analysis served to elucidate the degradation pathwaysof phenol

    Evolution of shocks and turbulence in major cluster mergers

    Full text link
    We performed a set of cosmological simulations of major mergers in galaxy clusters to study the evolution of merger shocks and the subsequent injection of turbulence in the post-shock region and in the intra-cluster medium (ICM). The computations were done with the grid-based, adaptive mesh refinement hydro code Enzo, using an especially designed refinement criteria for refining turbulent flows in the vicinity of shocks. A substantial amount of turbulence energy is injected in the ICM due to major merger. Our simulations show that the shock launched after a major merger develops an ellipsoidal shape and gets broken by the interaction with the filamentary cosmic web around the merging cluster. The size of the post-shock region along the direction of shock propagation is about 300 kpc h^-1, and the turbulent velocity dispersion in this region is larger than 100 km s^-1. Scaling analysis of the turbulence energy with the cluster mass within our cluster sample is consistent with M^(5/3), i.e. the scaling law for the thermal energy in the self-similar cluster model. This clearly indicates the close relation between virialization and injection of turbulence in the cluster evolution. We found that the ratio of the turbulent to total pressure in the cluster core within 2 Gyr after the major merger is larger than 10%, and it takes about 4 Gyr to get relaxed, which is substantially longer than typically assumed in the turbulent re-acceleration models, invoked to explain the statistics of observed radio halos. Striking similarities in the morphology and other physical parameters between our simulations and the "symmetrical radio relics" found at the periphery of the merging cluster A3376 are finally discussed. In particular, the interaction between the merger shock and the filaments surrounding the cluster could explain the presence of "notch-like" features at the edges of the double relics.Comment: 16 pages, 19 figures, Published in Astrophysical Journal (online) and printed version will be published on 1st January, 201

    Interesting magnetic properties of Fe1−x_{1-x}Cox_xSi alloys

    Full text link
    Solid solution between nonmagnetic narrow gap semiconductor FeSi and diamagnetic semi-metal CoSi gives rise to interesting metallic alloys with long-range helical magnetic ordering, for a wide range of intermediate concentration. We report various interesting magnetic properties of these alloys, including low temperature re-entrant spin-glass like behaviour and a novel inverted magnetic hysteresis loop. Role of Dzyaloshinski-Moriya interaction in the magnetic response of these non-centrosymmetric alloys is discussed.Comment: 11 pages and 3 figure
    • 

    corecore