347 research outputs found

    The glucocorticoid dexamethasone inhibits HIF-1α stabilization and metabolic reprogramming in lipopolysaccharide-stimulated primary macrophages

    Get PDF
    Synthetic glucocorticoids are used to treat many chronic and acute inflammatory conditions. Frequent adverse effects of prolonged exposure toglucocorticoids include disturbances of glucose homeostasis caused by changes in glucose traffic and metabolism in muscle, liver, and adiposetissues. Macrophages are important targets for the anti-inflammatory actions of glucocorticoids. These cells rely on aerobic glycolysis to supportvarious pro-inflammatory and antimicrobial functions. Employing a potent pro-inflammatory stimulus in two commonly used model systems(mouse bone marrow-derived and human monocyte-derived macrophages), we showed that the synthetic glucocorticoid dexamethasone inhib-ited lipopolysaccharide-mediated activation of the hypoxia-inducible transcription factor HIF-1α, a critical driver of glycolysis. In both cell types,dexamethasone-mediated inhibition of HIF-1α reduced the expression of the glucose transporter GLUT1, which imports glucose to fuel aerobicglycolysis. Aside from this conserved response, other metabolic effects of lipopolysaccharide and dexamethasone differed between human andmouse macrophages. These findings suggest that glucocorticoids exert anti-inflammatory effects by impairing HIF-1α-dependent glucose uptakein activated macrophages. Furthermore, harmful and beneficial (anti-inflammatory) effects of glucocorticoids may have a shared mechanisticbasis, depending on the alteration of glucose utilization

    Priming in response to pro-inflammatory cytokines is a feature of adult synovial but not dermal fibroblasts

    Get PDF
    Background: It has been hypothesized that chronic inflammatory diseases such as rheumatoid arthritis (RA) may be caused by a failure of negative feedback mechanisms. This study sought to examine negative feedback mechanisms in fibroblast-like synoviocytes (FLS), one of the most abundant cell types in the joint. We hypothesized that prior exposure of healthy FLS to an inflammatory stimulus would attenuate their responses to a second inflammatory stimulus, in the same way that negative feedback mechanisms desensitize macrophages to repeated stimulation by lipopolysaccharide. We further hypothesized that such negative feedback mechanisms would be defective in FLS derived from the joints in RA.Methods: Synovial fibroblasts and dermal fibroblasts from non-inflamed joints and joints affected by RA and a fibroblast cell line from neonatal foreskin were stimulated twice with tumour necrosis factor (TNF) α or interleukin (IL)-1α, with a 24-h rest period between the two 24-h stimulations. Differences between response to the first and second dose of cytokine were examined by assessing secretion of inflammatory factors and intracellular signalling activity.Results: FLS from both non-inflamed joints and joints affected by RA mounted an augmented response to re-stimulation. This response was site-specific, as primary dermal fibroblasts did not alter their response between doses. The fibroblast priming was also gene-specific and transient. Assessment of signalling events and nuclear localization showed prolonged activation of nuclear factor (NF)-κB during the second stimulation.Conclusion: This study aimed to examine mechanisms of negative regulation of inflammatory responses in FLS. Instead, we found a pro-inflammatory stromal memory in FLS obtained from both non-inflamed joints and joints affected by RA. This suggests the joint is an area at high risk of chronic inflammation, and may provide a piece in the puzzle of how chronic inflammation is established in RA

    Evidence for early life in Earth’s oldest hydrothermal vent precipitates

    Get PDF
    Although it is not known when or where life on Earth began, some of the earliest habitable environments may have been submarine-hydrothermal vents. Here we describe putative fossilized microorganisms that are at least 3,770 million and possibly 4,280 million years old in ferruginous sedimentary rocks, interpreted as seafloor-hydrothermal vent-related precipitates, from the Nuvvuagittuq belt in Quebec, Canada. These structures occur as micrometre-scale haematite tubes and filaments with morphologies and mineral assemblages similar to those of filamentous microorganisms from modern hydrothermal vent precipitates and analogous microfossils in younger rocks. The Nuvvuagittuq rocks contain isotopically light carbon in carbonate and carbonaceous material, which occurs as graphitic inclusions in diagenetic carbonate rosettes, apatite blades intergrown among carbonate rosettes and magnetite–haematite granules, and is associated with carbonate in direct contact with the putative microfossils. Collectively, these observations are consistent with an oxidized biomass and provide evidence for biological activity in submarine-hydrothermal environments more than 3,770 million years ago

    Dexamethasone impairs the expression of antimicrobial mediators in lipopolysaccharide-activated primary macrophages by inhibiting both expression and function of interferon β

    Get PDF
    Glucocorticoids potently inhibit expression of many inflammatory mediators, and have been widely used to treat both acute and chronic inflammatory diseases for more than seventy years. However, they can have several unwanted effects, amongst which immunosuppression is one of the most common. Here we used microarrays and proteomic approaches to characterise the effect of dexamethasone (a synthetic glucocorticoid) on the responses of primary mouse macrophages to a potent pro-inflammatory agonist, lipopolysaccharide (LPS). Gene ontology analysis revealed that dexamethasone strongly impaired the lipopolysaccharide-induced antimicrobial response, which is thought to be driven by an autocrine feedback loop involving the type I interferon IFNβ. Indeed, dexamethasone strongly and dose-dependently inhibited the expression of IFNβ by LPS-activated macrophages. Unbiased proteomic data also revealed an inhibitory effect of dexamethasone on the IFNβ-dependent program of gene expression, with strong down-regulation of several interferon-induced antimicrobial factors. Surprisingly, dexamethasone also inhibited the expression of several antimicrobial genes in response to direct stimulation of macrophages with IFNβ. We tested a number of hypotheses based on previous publications, but found that no single mechanism could account for more than a small fraction of the broad suppressive impact of dexamethasone on macrophage type I interferon signaling, underlining the complexity of this pathway. Preliminary experiments indicated that dexamethasone exerted similar inhibitory effects on primary human monocyte-derived or alveolar macrophages.</p

    Dominant suppression of inflammation via targeted mutation of the mRNA destabilizing protein tristetraprolin

    Get PDF
    In myeloid cells, the mRNA-destabilizing protein tristetraprolin (TTP) is induced and extensively phosphorylated in response to LPS. To investigate the role of two specific phosphorylations, at serines 52 and 178, we created a mouse strain in which those residues were replaced by nonphosphorylatable alanine residues. The mutant form of TTP was constitutively degraded by the proteasome and therefore expressed at low levels, yet it functioned as a potent mRNA destabilizing factor and inhibitor of the expression of many inflammatory mediators. Mice expressing only the mutant form of TTP were healthy and fertile, and their systemic inflammatory responses to LPS were strongly attenuated. Adaptive immune responses and protection against infection by Salmonella typhimurium were spared. A single allele encoding the mutant form of TTP was sufficient for enhanced mRNA degradation and underexpression of inflammatory mediators. Therefore, the equilibrium between unphosphorylated and phosphorylated TTP is a critical determinant of the inflammatory response, and manipulation of this equilibrium may be a means of treating inflammatory pathologies

    Functional Change from Five to Fifteen Years after Traumatic Brain Injury

    Get PDF
    Few studies have assessed the long-term functional outcomes of traumatic brain injury (TBI) in large, well-characterized samples. Using the Traumatic Brain Injury Model Systems cohort, this study assessed the maintenance of independence between years 5 and 15 post-injury and risk factors for decline. The study sample included 1381 persons with TBI who received inpatient rehabilitation, survived to 15 years post-injury, and were available for data collection at 5 or 10 years and 15 years post-injury. The Functional Independence Measure (FIM) and Disability Rating Scale (DRS) were used to measure functional outcomes. The majority of participants had no changes during the 10-year time frame. For FIM, only 4.4% showed decline in Self-Care, 4.9% declined in Mobility, and 5.9% declined in Cognition. Overall, 10.4% showed decline in one or more FIM subscales. Decline was detected by DRS Level of Function (24% with >1-point change) and Employability (6% with >1-point change). Predictors of decline factors across all measures were age >25 years and, across most measures, having less than or equal to a high school education. Additional predictors of FIM decline included male sex (FIM Mobility and Self-Care) and longer rehabilitation length of stay (FIM Mobility and Cognition). In contrast to studies reporting change in the first 5 years post-TBI inpatient rehabilitation, a majority of those who survive to 15 years do not experience functional decline. Aging and cognitive reserve appear to be more important drivers of loss of function than original severity of the injury. Interventions to identify those at risk for decline may be needed to maintain or enhance functional status as persons age with a TBI

    Macrophage responses to lipopolysaccharide are modulated by a feedback loop involving prostaglandin E2, dual specificity phosphatase 1 and tristetraprolin

    Get PDF
    In many different cell types, pro-inflammatory agonists induce the expression of cyclooxygenase 2 (COX-2), an enzyme that catalyzes rate-limiting steps in the conversion of arachidonic acid to a variety of lipid signaling molecules, including prostaglandin E2 (PGE2). PGE2 has key roles in many early inflammatory events, such as the changes of vascular function that promote or facilitate leukocyte recruitment to sites of inflammation. Depending on context, it also exerts many important anti-inflammatory effects, for example increasing the expression of the anti-inflammatory cytokine interleukin 10 (IL-10), and decreasing that of the pro-inflammatory cytokine tumor necrosis factor (TNF). The tight control of both biosynthesis of, and cellular responses to, PGE2 are critical for the precise orchestration of the initiation and resolution of inflammatory responses. Here we describe evidence of a negative feedback loop, in which PGE2 augments the expression of dual specificity phosphatase 1, impairs the activity of mitogen-activated protein kinase p38, increases the activity of the mRNA-destabilizing factor tristetraprolin, and thereby inhibits the expression of COX-2. The same feedback mechanism contributes to PGE2-mediated suppression of TNF release. Engagement of the DUSP1-TTP regulatory axis by PGE2 is likely to contribute to the switch between initiation and resolution phases of inflammation

    A point-of-care clinical trial comparing insulin administered using a sliding scale versus a weight-based regimen

    Get PDF
    Background Clinical trials are widely considered the gold standard in comparative effectiveness research (CER) but the high cost and complexity of traditional trials and concerns about generalizability to broad patient populations and general clinical practice limit their appeal. Unsuccessful implementation of CER results limits the value of even the highest quality trials. Planning for a trial comparing two standard strategies of insulin administration for hospitalized patients led us to develop a new method for a clinical trial designed to be embedded directly into the clinical care setting thereby lowering the cost, increasing the pragmatic nature of the overall trial, strengthening implementation, and creating an integrated environment of research-based care

    Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development

    Get PDF
    Mood stabilising drugs such as lithium (LiCl) and valproic acid (VPA) are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO) term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4), neurons (Neurofilament M), astrocytes (GFAP) or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals
    corecore