10 research outputs found

    Untethered muscle tracking using magnetomicrometry

    Get PDF
    Muscle tissue drives nearly all movement in the animal kingdom, providing power, mobility, and dexterity. Technologies for measuring muscle tissue motion, such as sonomicrometry, fluoromicrometry, and ultrasound, have significantly advanced our understanding of biomechanics. Yet, the field lacks the ability to monitor muscle tissue motion for animal behavior outside the lab. Towards addressing this issue, we previously introduced magnetomicrometry, a method that uses magnetic beads to wirelessly monitor muscle tissue length changes, and we validated magnetomicrometry via tightly-controlled in situ testing. In this study we validate the accuracy of magnetomicrometry against fluoromicrometry during untethered running in an in vivo turkey model. We demonstrate real-time muscle tissue length tracking of the freely-moving turkeys executing various motor activities, including ramp ascent and descent, vertical ascent and descent, and free roaming movement. Given the demonstrated capacity of magnetomicrometry to track muscle movement in untethered animals, we feel that this technique will enable new scientific explorations and an improved understanding of muscle function.</jats:p

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≤ 18 years: 69, 48, 23; 85%), older adults (≥ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P &lt; 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Lack of Protein S in mice causes embryonic lethal coagulopathy and vascular dysgenesis

    No full text
    Protein S (ProS) is a blood anticoagulant encoded by the Pros1 gene, and ProS deficiencies are associated with venous thrombosis, stroke, and autoimmunity. These associations notwithstanding, the relative risk that reduced ProS expression confers in different disease settings has been difficult to assess without an animal model. We have now described a mouse model of ProS deficiency and shown that all Pros1–/– mice die in utero, from a fulminant coagulopathy and associated hemorrhages. Although ProS is known to act as a cofactor for activated Protein C (aPC), plasma from Pros1+/– heterozygous mice exhibited accelerated thrombin generation independent of aPC, and Pros1 mutants displayed defects in vessel development and function not seen in mice lacking protein C. Similar vascular defects appeared in mice in which Pros1 was conditionally deleted in vascular smooth muscle cells. Mutants in which Pros1 was deleted specifically in hepatocytes, which are thought to be the major source of ProS in the blood, were viable as adults and displayed less-severe coagulopathy without vascular dysgenesis. Finally, analysis of mutants in which Pros1 was deleted in endothelial cells indicated that these cells make a substantial contribution to circulating ProS. These results demonstrate that ProS is a pleiotropic anticoagulant with aPC-independent activities and highlight new roles for ProS in vascular development and homeostasis

    Novel variants in KAT6B spectrum of disorders expand our knowledge of clinical manifestations and molecular mechanisms

    No full text
    The phenotypic variability associated with pathogenic variants in Lysine Acetyltransferase 6B (KAT6B, a.k.a. MORF, MYST4) results in several interrelated syndromes including Say-Barber-Biesecker-Young-Simpson Syndrome and Genitopatellar Syndrome. Here we present 20 new cases representing 10 novel KAT6B variants. These patients exhibit a range of clinical phenotypes including intellectual disability, mobility and language difficulties, craniofacial dysmorphology, and skeletal anomalies. Given the range of features previously described for KAT6B-related syndromes, we have identified additional phenotypes including concern for keratoconus, sensitivity to light or noise, recurring infections, and fractures in greater numbers than previously reported. We surveyed clinicians to qualitatively assess the ways families engage with genetic counselors upon diagnosis. We found that 56% (10/18) of individuals receive diagnoses before the age of 2&nbsp;years (median age&nbsp;=&nbsp;1.96&nbsp;years), making it challenging to address future complications with limited accessible information and vast phenotypic severity. We used CRISPR to introduce truncating variants into the KAT6B gene in model cell lines and performed chromatin accessibility and transcriptome sequencing to identify key dysregulated pathways. This study expands the clinical spectrum and addresses the challenges to management and genetic counseling for patients with KAT6B-related disorders

    Defining Mechanisms of Recurrence Following Apical Prolapse Repair Based on Imaging Criteria

    No full text
    BackgroundProlapse recurrence after transvaginal surgical repair is common; however, its mechanisms are ill-defined. A thorough understanding of how and why prolapse repairs fail is needed to address their high rate of anatomic recurrence and to develop novel therapies to overcome defined deficiencies.ObjectiveThis study aimed to identify mechanisms and contributors of anatomic recurrence after vaginal hysterectomy with uterosacral ligament suspension (native tissue repair) vs transvaginal mesh (VM) hysteropexy surgery for uterovaginal prolapse.Study designThis multicenter study was conducted in a subset of participants in a randomized clinical trial by the Eunice Kennedy Shriver National Institute of Child Health and Human Development Pelvic Floor Disorders Network. Overall, 94 women with uterovaginal prolapse treated via native tissue repair (n=48) or VM hysteropexy (n=46) underwent pelvic magnetic resonance imaging at rest, maximal strain, and poststrain rest (recovery) 30 to 42 months after surgery. Participants who desired reoperation before 30 to 42 months were imaged earlier to assess the impact of the index surgery. Using a novel 3-dimensional pelvic coordinate system, coregistered midsagittal images were obtained to assess study outcomes. Magnetic resonance imaging-based anatomic recurrence (failure) was defined as prolapse beyond the hymen. The primary outcome was the mechanism of failure (apical descent vs anterior vaginal wall elongation), including the frequency and site of failure. Secondary outcomes included displacement of the vaginal apex and perineal body and change in the length of the anterior wall, posterior wall, vaginal perimeter, and introitus of the vagina from rest to strain and rest to recovery. Group differences in the mechanism, frequency, and site of failure were assessed using the Fisher exact tests, and secondary outcomes were compared using Wilcoxon rank-sum tests.ResultsOf the 88 participants analyzed, 37 (42%) had recurrent prolapse (VM hysteropexy, 13 of 45 [29%]; native tissue repair, 24 of 43 [56%]). The most common site of failure was the anterior compartment (VM hysteropexy, 38%; native tissue repair, 92%). The primary mechanism of recurrence was apical descent (VM hysteropexy, 85%; native tissue repair, 67%). From rest to strain, failures (vs successes) had greater inferior displacement of the vaginal apex (difference,&nbsp;-12 mm; 95% confidence interval,&nbsp;-19 to&nbsp;-6) and perineal body (difference,&nbsp;-7 mm; 95% confidence interval,&nbsp;-11 to&nbsp;-4) and elongation of the anterior vaginal wall (difference, 12 mm; 95% confidence interval, 8-16) and vaginal introitus (difference, 11 mm; 95% confidence interval, 7-15).ConclusionThe primary mechanism of prolapse recurrence following vaginal hysterectomy with uterosacral ligament suspension or VM hysteropexy was apical descent. In addition, greater inferior descent of the vaginal apex and perineal body, lengthening of the anterior vaginal wall, and increased size of the vaginal introitus with strain were associated with anatomic failure. Further studies are needed to provide additional insight into the mechanism by which these factors contribute to anatomic failure

    Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study

    No full text
    Background: Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs). Methods: This is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support. Results: A total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83-7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97-2.11]), and tachypnoea at hospital admission (OR [95%CI]; 1.16 [1.14-1.18]). Patients who failed HFNC/NIV had a higher 28-day fatality ratio (OR [95%CI]; 1.27 [1.25-1.30]). Conclusions: In the present international cohort, the most frequently used advanced respiratory support was the HFNC. However, IMV was used more often in LMIC. Higher leucocyte count, tachypnoea, and treatment in LMIC were risk factors for HFNC/NIV failure. HFNC/NIV failure was related to worse clinical outcomes, such as 28-day mortality. Trial registration This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable

    Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study

    No full text
    Background: Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs). Methods: This is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support. Results: A total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83–7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97–2.11]), and tachypnoea at hospital admission (OR [95%CI]; 1.16 [1.14–1.18]). Patients who failed HFNC/NIV had a higher 28-day fatality ratio (OR [95%CI]; 1.27 [1.25–1.30]). Conclusions: In the present international cohort, the most frequently used advanced respiratory support was the HFNC. However, IMV was used more often in LMIC. Higher leucocyte count, tachypnoea, and treatment in LMIC were risk factors for HFNC/NIV failure. HFNC/NIV failure was related to worse clinical outcomes, such as 28-day mortality. Trial registration This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable
    corecore