276 research outputs found

    Predictors of Successful Decannulation Using a Tracheostomy Retainer in Patients with Prolonged Weaning and Persisting Respiratory Failure

    Get PDF
    Background: For percutaneously tracheostomized patients with prolonged weaning and persisting respiratory failure, the adequate time point for safe decannulation and switch to noninvasive ventilation is an important clinical issue. Objectives: We aimed to evaluate the usefulness of a tracheostomy retainer (TR) and the predictors of successful decannulation. Methods: We studied 166 of 384 patients with prolonged weaning in whom a TR was inserted into a tracheostoma. Patients were analyzed with regard to successful decannulation and characterized by blood gas values, the duration of previous spontaneous breathing, Simplified Acute Physiology Score (SAPS) and laboratory parameters. Results: In 47 patients (28.3%) recannulation was necessary, mostly due to respiratory decompensation and aspiration. Overall, 80.6% of the patients could be liberated from a tracheostomy with the help of a TR. The need for recannulation was associated with a shorter duration of spontaneous breathing within the last 24/48 h (p < 0.01 each), lower arterial oxygen tension (p = 0.025), greater age (p = 0.025), and a higher creatinine level (p = 0.003) and SAPS (p < 0.001). The risk for recannulation was 9.5% when patients breathed spontaneously for 19-24 h within the 24 h prior to decannulation, but 75.0% when patients breathed for only 0-6 h without ventilatory support (p < 0.001). According to ROC analysis, the SAPS best predicted successful decannulation {[}AUC 0.725 (95% CI: 0.634-0.815), p < 0.001]. Recannulated patients had longer durations of intubation (p = 0.046), tracheostomy (p = 0.003) and hospital stay (p < 0.001). Conclusion: In percutaneously tracheostomized patients with prolonged weaning, the use of a TR seems to facilitate and improve the weaning process considerably. The duration of spontaneous breathing prior to decannulation, age and oxygenation describe the risk for recannulation in these patients. Copyright (c) 2012 S. Karger AG, Base

    Naturally Occurring Genetic Variants in Human Chromogranin A (CHGA) Associated with Hypertension as well as Hypertensive Renal Disease

    Get PDF
    Chromogranin A (CHGA) plays a fundamental role in the biogenesis of catecholamine secretory granules. Changes in storage and release of CHGA in clinical and experimental hypertension prompted us to study whether genetic variation at the CHGA locus might contribute to alterations in autonomic function, and hence hypertension and its target organ consequences such as hypertensive renal disease (nephrosclerosis). Systematic polymorphism discovery across the human CHGA locus revealed both common and unusual variants in both the open reading frame and such regulatory regions as the proximal promoter and 3â€Č-UTR. In chromaffin cell-transfected CHGA 3â€Č-UTR and promoter/luciferase reporter plasmids, the functional consequences of the regulatory/non-coding allelic variants were documented. Variants in both the proximal promoter and the 3â€Č-UTR displayed statistical associations with hypertension. Genetic variation in the proximal CHGA promoter predicted glomerular filtration rate in healthy twins. However, for hypertensive renal damage, both end-stage renal disease and rate of progression of earlier disease were best predicted by variants in the 3â€Č-UTR. Finally, mechanistic studies were undertaken initiated by the clue that CHGA promoter variation predicted circulating endothelin-1. In cultured endothelial cells, CHGA triggered co-release of not only the vasoconstrictor and pro-fibrotic endothelin-1, but also the pro-coagulant von Willebrand Factor and the pro-angiogenic angiopoietin-2. These findings, coupled with stimulation of endothelin-1 release from glomerular capillary endothelial cells by CHGA, suggest a plausible mechanism whereby genetic variation at the CHGA locus eventuates in alterations in human renal function. These results document the consequences of genetic variation at the CHGA locus for cardiorenal disease and suggest mechanisms whereby such variation achieves functional effects

    Probing forces of menisci: what levels are safe for arthroscopic surgery

    Get PDF
    Purpose To facilitate effective learning, feedback on performance during arthroscopic training is essential. Less attention has been paid to feedback on monitoring safe handling of delicate tissues such as meniscus. The goal is to measure in vitro probing forces of menisci and compare them with a theoretical maximum probing force (TMPF). Method Menisci samples of ten cadavers were mounted on force platforms to measure probing forces up to 20 N in three directions. Nineteen subjects participated: six novices (experience 60 arthroscopies), and three faculty (>250 a year). All had to perform three tasks on each meniscus sample with an arthroscopic probe: push three times on the superior meniscal surface, perform one continuous run on the superior meniscal surface, and push three times on the inferior meniscal surface. The absolute maximum probing force (AMPF) was determined for each condition. A multivariable linear regression analysis was performed to assess the influence of experience on the force magnitude (P < 0.05). AMPFs were compared to the TMPF (estimated to be 8.5 N). Results The AMPF of the push task was on average 2.8 N (standard deviation (SD) of 0.8 N), of the continuous run task 2.5 N (SD 0.9 N), and of the pull task 3.9 N (SD 2.0 N). Significant difference was present between experts and novices (P < 0.05). The AMPFs are in the same order of magnitude as the TMPF. Conclusion The results indicate the necessity of using a safety level for tissue manipulation when training arthroscopy and a value for is magnitude.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Catecholamine Storage Vesicles: Role of Core Protein Genetic Polymorphisms in Hypertension

    Get PDF
    Hypertension is a complex trait with deranged autonomic control of the circulation. The sympathoadrenal system exerts minute-to-minute control over cardiac output and vascular tone. Catecholamine storage vesicles (or chromaffin granules) of the adrenal medulla contain remarkably high concentrations of chromogranins/secretogranins (or “granins”), catecholamines, neuropeptide Y, adenosine triphosphate (ATP), and Ca2+. Within secretory granules, granins are co-stored with catecholamine neurotransmitters and co-released upon stimulation of the regulated secretory pathway. The principal granin family members, chromogranin A (CHGA), chromogranin B (CHGB), and secretogranin II (SCG2), may have evolved from shared ancestral exons by gene duplication. This article reviews human genetic variation at loci encoding the major granins and probes the effects of such polymorphisms on blood pressure, using twin pairs to probe heritability and individuals with the most extreme blood pressure values in the population to study hypertension

    Catestatin Improves Post-Ischemic Left Ventricular Function and Decreases Ischemia/Reperfusion Injury in Heart

    Get PDF
    The Chromogranin A (CgA)-derived anti-hypertensive peptide catestatin (CST) antagonizes catecholamine secretion, and is a negative myocardial inotrope acting via a nitric oxide-dependent mechanism. It is not known whether CST contributes to ischemia/reperfusion injury or is a component of a cardioprotective response to limit injury. Here, we tested whether CST by virtue of its negative inotropic activity improves post-ischemic cardiac function and cardiomyocyte survival. Three groups of isolated perfused hearts from adult Wistar rats underwent 30-min ischemia and 120-min reperfusion (I/R, Group 1), or were post-conditioned by brief ischemic episodes (PostC, 5-cycles of 10-s I/R at the beginning of 120-min reperfusion, Group 2), or with exogenous CST (75 nM for 20 min, CST-Post, Group-3) at the onset of reperfusion. Perfusion pressure and left ventricular pressure (LVP) were monitored. Infarct size was evaluated with nitroblue-tetrazolium staining. The CST (5 nM) effects were also tested in simulated ischemia/reperfusion experiments on cardiomyocytes isolated from young-adult rats, evaluating cell survival with propidium iodide labeling. Infarct size was 61 ± 6% of risk area in hearts subjected to I/R only. PostC reduced infarct size to 34 ± 5%. Infarct size in CST-Post was 36 ± 3% of risk area (P < 0.05 respect to I/R). CST-Post reduced post-ischemic rise of diastolic LVP, an index of contracture, and significantly improved post-ischemic recovery of developed LVP. In isolated cardiomyocytes, CST increased the cell viability rate by about 65% after simulated ischemia/reperfusion. These results suggest a novel cardioprotective role for CST, which appears mainly due to a direct reduction of post-ischemic myocardial damages and dysfunction, rather than to an involvement of adrenergic terminals and/or endothelium

    A Systematic Literature Review with Meta-Analyses of Within- and Between-Day Differences in Objectively Measured Physical Activity in School-Aged Children

    Get PDF
    Background: Targeting specific time periods of the day or week may enhance physical activity (PA) interventions in youth. The most prudent time segments to target are currently unclear.  Objectives: To systematically review the literature describing differences in young people’s objectively measured PA on weekdays vs. weekends, in school vs. out of school, weekends vs. out of school and lesson time vs. break time.  Methods: Electronic databases were searched for English-language, cross-sectional studies of school-aged children (4–18 years) reporting time-segment-specific accelerometer-measured PA from 01/1990 to 01/2013. We meta-analysed standardised mean differences (SMD) between time segments for mean accelerometer counts per minute (TPA) and minutes in moderate-to-vigorous PA (MVPA). SMD is reported in units of standard deviation; 0.2, 0.5 and 0.8 represent small, moderate and large effects. Heterogeneity was explored using meta-regression (potential effect modifiers: age, sex and study setting).  Results: Of the 54 included studies, 37 were eligible for meta-analyses. Children were more active on weekdays than weekends [pooled SMD (95 % CI) TPA 0.14 (0.08; 0.20), MVPA 0.42 (0.35; 0.49)]. On school days, TPA was lower in school than out of school; however, marginally more MVPA was accumulated in school [TPA −0.24 (−0.40; −0.08), MVPA 0.17 (−0.03; 0.38)]. TPA was slightly lower on weekends than out of school on school days, but a greater absolute volume of MVPA was performed on weekends [TPA −0.10 (−0.19; −0.01), MVPA 1.02 (0.82; 1.23)]. Heterogeneity between studies was high (I2 73.3–96.3 %), with 20.3–53.1 % of variance between studies attributable to potential moderating factors.  Conclusions: School-aged children are more active on weekdays than weekend days. The outcome measure influences the conclusions for other comparisons. Findings support the tailoring of intervention strategies to specific time periods

    Small-animal SPECT and SPECT/CT: application in cardiovascular research

    Get PDF
    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter
    • 

    corecore