534 research outputs found

    Garden varieties: how attractive are recommended garden plants to butterflies?

    Get PDF
    One way the public can engage in insect conservation is through wildlife gardening, including the growing of insect-friendly flowers as sources of nectar. However, plant varieties differ in the types of insects they attract. To determine which garden plants attracted which butterflies, we counted butterflies nectaring on 11 varieties of summer-flowering garden plants in a rural garden in East Sussex, UK. These plants were all from a list of 100 varieties considered attractive to British butterflies, and included the five varieties specifically listed by the UK charity Butterfly Conservation as best for summer nectar. A total of 2659 flower visits from 14 butterfly and one moth species were observed. We performed a principal components analysis which showed contrasting patterns between the species attracted to Origanum vulgare and Buddleia davidii. The ā€œbutterfly bushā€ Buddleia attracted many nymphalines, such as the peacock, Inachis io, but very few satyrines such as the gatekeeper, Pyronia tithonus, which mostly visited Origanum. Eupatorium cannibinum had the highest Simpsonā€™s Diversity score of 0.75, while Buddleia and Origanum were lower, scoring 0.66 and 0.50 respectively. No one plant was good at attracting all observed butterfly species, as each attracted only a subset of the butterfly community. We conclude that to create a butterfly-friendly garden, a variety of plant species are required as nectar sources for butterflies. Furthermore, garden plant recommendations can probably benefit from being more precise as to the species of butterfly they attract

    Structural representations: causally relevant and different from detectors

    Get PDF
    This paper centers around the notion that internal, mental representations are grounded in structural similarity, i.e., that they are so-called S-representations. We show how S-representations may be causally relevant and argue that they are distinct from mere detectors. First, using the neomechanist theory of explanation and the interventionist account of causal relevance, we provide a precise interpretation of the claim that in S-representations, structural similarity serves as a ā€˜ā€˜fuel of successā€™ā€™, i.e., a relation that is exploitable for the representation using system. Then, we discuss crucial differences between S-representations and indicators or detectors, showing thatā€”contrary to claims made in the literatureā€”there is an important theoretical distinction to be drawn between the two

    mTORC1 in the Paneth cell niche couples intestinal stem cell function to calorie intake

    Get PDF
    How adult tissue stem and niche cells respond to the nutritional state of an organism is not well understood. Here we find that Paneth cells, a key constituent of the mammalian intestinal stem-cell (ISC) niche, augment stem-cell function in response to calorie restriction. Calorie restriction acts by reducing mechanistic target of rapamycin complex 1 (mTORC1) signalling in Paneth cells, and the ISC-enhancing effects of calorie restriction can be mimicked by rapamycin. Calorie intake regulates mTORC1 in Paneth cells, but not ISCs, and forced activation of mTORC1 in Paneth cells during calorie restriction abolishes the ISC-augmenting effects of the niche. Finally, increased expression of bone stromal antigen 1 (Bst1) in Paneth cellsā€”an ectoenzyme that produces the paracrine factor cyclic ADP riboseā€”mediates the effects of calorie restriction and rapamycin on ISC function. Our findings establish that mTORC1 non-cell-autonomously regulates stem-cell self-renewal, and highlight a significant role of the mammalian intestinal niche in coupling stem-cell function to organismal physiology.National Institutes of Health (U.S.) (CA103866)National Institutes of Health (U.S.) (CA129105)David H. Koch Institute for Integrative Cancer Research at MIT (Initiator Award)Ellison Medical FoundationNational Cancer Institute (U.S.) (NCI (T32CA09216) fellowship support)Academy of FinlandFoundationsā€™ Postdoc PoolNational Institutes of Health (U.S.) (NIH (1F32AG032833-01A1))Jane Coffin Childs Memorial Fund for Medical Researc

    Predictive coding and representationalism

    Get PDF
    According to the predictive coding theory of cognition (PCT), brains are predictive machines that use perception and action to minimize prediction error, i.e. the discrepancy between bottomā€“up, externally-generated sensory signals and topā€“down, internally-generated sensory predictions. Many consider PCT to have an explanatory scope that is unparalleled in contemporary cognitive science and see in it a framework that could potentially provide us with a unified account of cognition. It is also commonly assumed that PCT is a representational theory of sorts, in the sense that it postulates that our cognitive contact with the world is mediated by internal representations. However, the exact sense in which PCT is representational remains unclear; neither is it clear that it deserves such statusā€”that is, whether it really invokes structures that are truly and nontrivially representational in nature. In the present article, I argue that the representational pretensions of PCT are completely justified. This is because the theory postulates cognitive structuresā€”namely action-guiding, detachable, structural models that afford representational error detectionā€”that play genuinely representational functions within the cognitive system

    Development and characterisation of a large diameter decellularised vascular allograft

    Get PDF
    The aims of this study were to develop a biological large diameter vascular graft by decellularisation of native human aorta to remove the immunogenic cells whilst retaining the essential biomechanical, and biochemical properties for the ultimate benefit of patients with infected synthetic grafts. Donor aortas (n = 6) were subjected to an adaptation of a propriety decellularisation process to remove the cells and acellularity assessed by histological analysis and extraction and quantification of total DNA. The biocompatibility of the acellular aortas was determined using standard contact cytotoxicity tests. Collagen and denatured collagen content of aortas was determined and immunohistochemistry was used to determine the presence of specific extracellular matrix proteins. Donor aortas (n = 6) were divided into two, with one half subject to decellularisation and the other half retained as native tissue. The native and decellularised aorta sections were then subject to uniaxial tensile testing to failure [axial and circumferential directions] and suture retention testing. The data was compared using a paired t-test. Histological evaluation showed an absence of cells in the treated aortas and retention of histoarchitecture including elastin content. The decellularised aortas had less than 15 ng mgĀÆĀ¹ total DNA per dry weight (mean 94% reduction) and were biocompatible as determined by in vitro contact cytotoxicity tests. There were no gross changes in the histoarchitecture [elastin and collagen matrix] of the acellular aortas compared to native controls. The decellularisation process also reduced calcium deposits within the tissue. The uniaxial tensile and suture retention testing revealed no significant differences in the material properties (p > 0.05) of decellularised aorta. The decellularisation procedure resulted in minimal changes to the biological and biomechanical properties of the donor aortas. Acellular donor aorta has excellent potential for use as a large diameter vascular graft

    The effects of spatial legacies following shifting management practices and fire on boreal forest age structure

    Get PDF
    Forest age structure and its spatial arrangement are important elements of sustainable forestry because of their effects on biodiversity and timber availability. Forest management objectives that include specific forest age structure may not be easily attained due to constraints imposed by the legacies of historical management and natural disturbance. We used a spatially explicit stochastic model to explore the synergetic effects of forest management and fire on boreal forest age structure. Specifically, we examined (1) the duration of spatial legacies of different management practices in the boreal forest, (2) how multiple shifts in management practices affect legacy duration and the spatial trajectories of forest age structure, and (3) how fire influences legacy duration and pattern development in combination with harvesting. Results based on 30 replicates of 500 years for each scenario indicate that (1) spatial legacies persist over 200 years and the rate at which legacies are overcome depends on whether new management targets are in synchrony with existing spatial pattern; (2) age specific goals were met faster after multiple management shifts due to the similar spatial scale of the preceding management types; (3) because large fires can erase the spatial pattern created by smaller disturbances, scenarios with fire had shorter lags than scenarios without fire. These results suggest that forest management goals can be accelerated by applying management at a similar spatial scale as existing spatial patterns. Also, management planning should include careful consideration of historical management as well as current and likely future disturbances

    MicroRNA signatures in B-cell lymphomas

    Get PDF
    Accurate lymphoma diagnosis, prognosis and therapy still require additional markers. We explore the potential relevance of microRNA (miRNA) expression in a large series that included all major B-cell non-Hodgkin lymphoma (NHL) types. The data generated were also used to identify miRNAs differentially expressed in Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) samples. A series of 147 NHL samples and 15 controls were hybridized on a human miRNA one-color platform containing probes for 470 human miRNAs. Each lymphoma type was compared against the entire set of NHLs. BL was also directly compared with DLBCL, and 43 preselected miRNAs were analyzed in a new series of routinely processed samples of 28 BLs and 43 DLBCLs using quantitative reverse transcription-polymerase chain reaction. A signature of 128 miRNAs enabled the characterization of lymphoma neoplasms, reflecting the lymphoma type, cell of origin and/or discrete oncogene alterations. Comparative analysis of BL and DLBCL yielded 19 differentially expressed miRNAs, which were confirmed in a second confirmation series of 71 paraffin-embedded samples. The set of differentially expressed miRNAs found here expands the range of potential diagnostic markers for lymphoma diagnosis, especially when differential diagnosis of BL and DLBCL is required

    Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins

    Get PDF
    Cotranslational protein folding can facilitate rapid formation of functional structures. However, it might also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are enriched towards the C-termini of polypeptide chains across diverse proteomes. We hypothesize that this is the result of evolutionary constraints for folding to occur prior to assembly. Using high-throughput imaging of protein homomers in vivo in E. coli and engineered protein constructs with N- and C-terminal oligomerization domains, we show that, indeed, proteins with C-terminal homomeric interface residues consistently assemble more efficiently than those with N-terminal interface residues. Using in vivo, in vitro and in silico experiments, we identify features that govern successful assembly of homomers, which have implications for protein design and expression optimization
    • ā€¦
    corecore