13 research outputs found

    Cytomegalovirus distribution and evolution in hominines

    Get PDF
    Herpesviruses are thought to have evolved in very close association with their hosts. This is notably the case for cytomegaloviruses (CMVs; genus Cytomegalovirus) infecting primates, which exhibit a strong signal of co-divergence with their hosts. Some herpesviruses are however known to have crossed species barriers. Based on a limited sampling of CMV diversity in the hominine (African great ape and human) lineage, we hypothesized that chimpanzees and gorillas might have mutually exchanged CMVs in the past. Here, we performed a comprehensive molecular screening of all 9 African great ape species/subspecies, using 675 fecal samples collected from wild animals. We identified CMVs in eight species/subspecies, notably generating the first CMV sequences from bonobos. We used this extended dataset to test competing hypotheses with various degrees of co-divergence/number of host switches while simultaneously estimating the dates of these events in a Bayesian framework. The model best supported by the data involved the transmission of a gorilla CMV to the panine (chimpanzee and bonobo) lineage and the transmission of a panine CMV to the gorilla lineage prior to the divergence of chimpanzees and bonobos, more than 800,000 years ago. Panine CMVs then co-diverged with their hosts. These results add to a growing body of evidence suggesting that viruses with a double-stranded DNA genome (including other herpesviruses, adenoviruses, and papillomaviruses) often jumped between hominine lineages over the last few million years.Peer Reviewe

    Independently paced Ca2+ oscillations in progenitor and differentiated cells in an ex vivo epithelial organ

    No full text
    Cytosolic Ca2+ is a highly dynamic, tightly regulated and broadly conserved cellular signal. Ca2+ dynamics have been studied widely in cellular monocultures, yet organs in vivo comprise heterogeneous populations of stem and differentiated cells. Here, we examine Ca2+ dynamics in the adult Drosophila intestine, a self-renewing epithelial organ in which stem cells continuously produce daughters that differentiate into either enteroendocrine cells or enterocytes. Live imaging of whole organs ex vivo reveals that stem-cell daughters adopt strikingly distinct patterns of Ca2+ oscillations after differentiation: enteroendocrine cells exhibit single-cell Ca2+ oscillations, whereas enterocytes exhibit rhythmic, long-range Ca2+ waves. These multicellular waves do not propagate through immature progenitors (stem cells and enteroblasts), of which the oscillation frequency is approximately half that of enteroendocrine cells. Organ-scale inhibition of gap junctions eliminates Ca2+ oscillations in all cell types – even, intriguingly, in progenitor and enteroendocrine cells that are surrounded only by enterocytes. Our findings establish that cells adopt fate-specific modes of Ca2+ dynamics as they terminally differentiate and reveal that the oscillatory dynamics of different cell types in a single, coherent epithelium are paced independently

    The nature of cell division forces in epithelial monolayers

    No full text
    Epithelial cells undergo striking morphological changes during division to ensure proper segregation of genetic and cytoplasmic materials. These morphological changes occur despite dividing cells being mechanically restricted by neighboring cells, indicating the need for extracellular force generation. Beyond driving cell division itself, forces associated with division have been implicated in tissue-scale processes, including development, tissue growth, migration, and epidermal stratification. While forces generated by mitotic rounding are well understood, forces generated after rounding remain unknown. Here, we identify two distinct stages of division force generation that follow rounding: (1) Protrusive forces along the division axis that drive division elongation, and (2) outward forces that facilitate postdivision spreading. Cytokinetic ring contraction of the dividing cell, but not activity of neighboring cells, generates extracellular forces that propel division elongation and contribute to chromosome segregation. Forces from division elongation are observed in epithelia across many model organisms. Thus, division elongation forces represent a universal mechanism that powers cell division in confining epithelia.</jats:p

    Fly Cell Atlas: a single-cell transcriptomic atlas of the adult fruit fly

    No full text
    Abstract The ability to obtain single cell transcriptomes for stable cell types and dynamic cell states is ushering in a new era for biology. We created the Tabula Drosophilae , a single cell atlas of the adult fruit fly which includes 580k cells from 15 individually dissected sexed tissues as well as the entire head and body. Over 100 researchers from the fly community contributed annotations to >250 distinct cell types across all tissues. We provide an in-depth analysis of cell type-related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal. Analysis of common cell types that are shared between tissues, such as blood and muscle cells, allowed the discovery of rare cell types and tissue-specific subtypes. This atlas provides a valuable resource for the entire Drosophila community and serves as a comprehensive reference to study genetic perturbations and disease models at single cell resolution

    Fly Cell Atlas: a single-nucleus transcriptomic atlas of the adult fruit fly

    Get PDF
    The fruit fly Drosophila melanogaster has served as a premier model organism for discovering fundamental and evolutionarily conserved biological mechanisms. Combining recent advances in single-cell sequencing with powerful fly genetic tools holds great promise for making further discoveries. Li et al. present a single-cell atlas of the entire adult fly that includes 580,000 cells and more than 250 annotated cell types. Cells from the head and body recapitulated cell types from 15 dissected tissues. In-depth analyses revealed rare cell types, cell-type-specific gene signatures, and sexual dimorphism. This atlas provides a resource for the Drosophila community to study genetic perturbations and diseases at single-cell resolution. —BA

    Fly Cell Atlas: a single-nucleus transcriptomic atlas of the adult fruit fly

    No full text
    The fruit fly Drosophila melanogaster has served as a premier model organism for discovering fundamental and evolutionarily conserved biological mechanisms. Combining recent advances in single-cell sequencing with powerful fly genetic tools holds great promise for making further discoveries. Li et al. present a single-cell atlas of the entire adult fly that includes 580,000 cells and more than 250 annotated cell types. Cells from the head and body recapitulated cell types from 15 dissected tissues. In-depth analyses revealed rare cell types, cell-type-specific gene signatures, and sexual dimorphism. This atlas provides a resource for the Drosophila community to study genetic perturbations and diseases at single-cell resolution. —BA

    Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly

    Get PDF
    For more than 100 years, the fruit fly Drosophila melanogaster has been one of the most studied model organisms. Here, we present a single-cell atlas of the adult fly, Tabula Drosophilae , that includes 580,000 nuclei from 15 individually dissected sexed tissues as well as the entire head and body, annotated to &gt;250 distinct cell types. We provide an in-depth analysis of cell type–related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal. Analysis of common cell types between tissues, such as blood and muscle cells, reveals rare cell types and tissue-specific subtypes. This atlas provides a valuable resource for the Drosophila community and serves as a reference to study genetic perturbations and disease models at single-cell resolution
    corecore