1,537 research outputs found

    Mechanisms and Regulation of Iron Homeostasis in the Rhizobia

    Get PDF
    Rhizobia are soil bacteria belonging to different genera whose most conspicuous characteristic is the ability to establish a symbiotic association with legumes and carry out nitrogen fixation. The success of these organisms in the rhizosphere or within the host plant involves the ability to sense the environment to assess the availability of nutrients, and to optimize cellular systems for their acquisition. Iron in natural habitats is mostly inaccessible due to low solubility, and microorganisms must compete for this limited nutrient. In addition to their agricultural and economic importance, rhizobia are model organisms that have given new insights into related, but less tractable animal pathogens. In particular, genetic control of iron homeostasis in the rhizobia and other a-Proteobacteria has moved away from the Fur paradigm to an iron sensing mechanism responding to the metal indirectly. Moreover, utilization of heme as an iron source is not unique to animal pathogens, and the rhizobial strategy reveals some interesting novel features. This chapter reviews advances in our understanding of iron metabolism in rhizobia.Agencia Nacional de Investigación e Innovació

    The Irr and RirA proteins participate in a complex regulatory circuit and act in concert to modulate bacterioferritin expression in Ensifer meliloti 1021

    Get PDF
    In this work we found that the bfr gene of the rhizobial species Ensifer meliloti, encoding a bacterioferritin iron storage protein, is involved in iron homeostasis and the oxidative stress response. This gene is located downstream of and overlapping the smc03787 open reading frame (ORF). No well-predicted RirA or Irr boxes were found in the region immediately upstream of the bfr gene although two presumptive RirA boxes and one presumptive Irr box were present in the putative promoter of smc03787. We demonstrate that bfr gene expression is enhanced under iron-sufficient conditions and that Irr and RirA modulate this expression. The pattern of bfr gene expression as well as the response to Irr and RirA is inversely correlated to that of smc03787. Moreover, our results suggest that the small RNA SmelC759 participates in RirA- and Irr-mediated regulation of bfr expression and that additional unknown factors are involved in iron-dependent regulation.Fil: Costa, Daniela. Instituto de Investigaciones Biológicas "Clemente Estable"; UruguayFil: Amarelle, Vanesa. Instituto de Investigaciones Biológicas "Clemente Estable"; UruguayFil: Valverde, Claudio Fabián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: O`Brian, Mark R.. State University of New York; Estados UnidosFil: Fabiano, Elena. Instituto de Investigaciones Biológicas "Clemente Estable"; Urugua

    Elliptical-core two mode fiber sensors and devices incorporating photoinduced refractive index gratings

    Get PDF
    Results of experiments performed using germanium-doped, elliptical core, two-mode optical fibers whose sensitivity to strain was spatially varied through the use of chirped, refractive-index gratings permanently induced into the core using Argon-ion laser light are presented. This type of distributed sensor falls into the class of eighted-fiber sensors which, through a variety of means, weight the strain sensitivity of a fiber according to a specified spatial profile. We describe results of a weighted-fiber vibration mode filter which successfully enhances the particular vibration mode whose spatial profile corresponds to the profile of the grating chirp. We report on the high temperature survivability of such grating-based sensors and discuss the possibility of multiplexing more than one sensor within a single fiber

    Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

    Get PDF
    A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly. This innovation is the design and prototype of a hybrid spacesuit approach that configures the spacesuit to seamlessly interface and integrate with either type of vehicular systems, while still maintaining the ability to function completely independent of the vehicle. An existing Advanced Crew Escape Suit (ACES) was utilized as the platform from which to develop the innovation. The ACES was retrofitted with selected components and one-off items to achieve the objective. The ventilation system concept was developed and prototyped/retrofitted to an existing ACES. Components were selected to provide suit connectors, hoses/umbilicals, internal breathing system ducting/ conduits, etc. The concept utilizes a lowpressure- drop, high-flow ventilation system that serves as a conduit from the vehicle supply into the suit, up through a neck seal, into the breathing helmet cavity, back down through the neck seal, out of the suit, and returned to the vehicle. The concept also utilizes a modified demand-based breathing system configured to function seamlessly with the low-pressure-drop closed-loop ventilation system

    A lineage-specific protein network at the trypanosome nuclear envelope

    Get PDF
    The nuclear envelope (NE) separates translation and transcription and is the location of multiple functions, including chromatin organization and nucleocytoplasmic transport. The molecular basis for many of these functions have diverged between eukaryotic lineages. Trypanosoma brucei, a member of the early branching eukaryotic lineage Discoba, highlights many of these, including a distinct lamina and kinetochore composition. Here, we describe a cohort of proteins interacting with both the lamina and NPC, which we term lamina-associated proteins (LAPs). LAPs represent a diverse group of proteins, including two candidate NPC-anchoring pore membrane proteins (POMs) with architecture conserved with S. cerevisiae and H. sapiens, and additional peripheral components of the NPC. While many of the LAPs are Kinetoplastid specific, we also identified broadly conserved proteins, indicating an amalgam of divergence and conservation within the trypanosome NE proteome, highlighting the diversity of nuclear biology across the eukaryotes, increasing our understanding of eukaryotic and NPC evolution.</p

    HmuS and HmuQ of Ensifer/Sinorhizobium meliloti degrade heme in vitro and participate in heme metabolism in vivo

    Get PDF
    Ensifer meliloti is a nitrogen-fixing symbiont of the alfalfa legume able to use heme as an iron source. The transport mechanism involved in heme acquisition in E. meliloti has been identified and characterized, but the fate of heme once inside the cell is not known. In silico analysis of E. meliloti 1021 genome revealed no canonical heme oxygenases although two genes encoding putative heme degrading enzymes, smc01518 and hmuS, were identified. SMc01518 is similar to HmuQ of Bradyrhizobium japonicum, which is weakly homologous to the Staphylococcus aureus IsdG heme-degrading monooxygenase, whereas HmuS is homolog to Pseudomonas aeruginosa PhuS, a protein reported as a heme chaperone and as a heme degrading enzyme. Recombinant HmuQ and HmuS were able to bind hemin with a 1:1 stoichiometry and displayed a Kd value of 5 and 4 lM, respectively. HmuS degrades heme in vitro to the biliverdin isomers IX-b and IX-d in an equimolar ratio. The HmuQ recombinant protein degrades heme to biliverdin IX-d only. Additionally, in this work we demonstrate that humS and hmuQ gene expression is regulated by iron and heme in a RirA dependent manner and that both proteins are involved in heme metabolism in E. meliloti in vivo.Agencia Nacional de Investigación e Innovació

    Regulation of Rnd3 Localization and Function By PKCα-Mediated Phosphorylation

    Get PDF
    The Rnd proteins (Rnd1, Rnd2 and Rnd3/RhoE) form a distinct branch of the Rho family of small GTPases. Altered Rnd3 expression causes changes in cytoskeletal organization and cell cycle progression. Rnd3 functions to decrease RhoA activity, but how Rnd3 itself is regulated to cause these changes is still under investigation. Unlike other Rho family proteins, Rnd3 is regulated not by GTP/GDP cycling, but at the level of expression and by posttranslational modifications such as prenylation and phosphorylation. We show here that, upon PKC agonist stimulation, Rnd3 undergoes an electrophoretic mobility shift and its subcellular localization becomes enriched at internal membranes. These changes are blocked by inhibition of conventional PKC isoforms and do not occur in PKCα-null cells or to a nonphosphorylatable mutant of Rnd3. We further show that PKCα directly phosphorylates Rnd3 in an in vitro kinase assay. Additionally, we provide evidence that the phosphorylation status of Rnd3 has a direct effect on its ability to block signaling from the Rho-ROCK pathway. These results identify an additional mechanism of regulation and provide clarification of how Rnd3 modulates Rho signaling to alter cytoskeletal organization
    corecore