837 research outputs found

    First Kepler results on compact pulsators - VIII. Mode identifications via period spacings in g-mode pulsating subdwarf B stars

    Get PDF
    We investigate the possibility of nearly equally spaced periods in 13 hot subdwarf B (sdB) stars observed with the Kepler spacecraft and one observed with CoRoT. Asymptotic limits for gravity (g-)mode pulsations provide relationships between equal-period spacings of modes with differing degrees ℓ and relationships between periods of the same radial order n but differing degrees ℓ. Period transforms, Kolmogorov-Smirnov tests and linear least-squares fits have been used to detect and determine the significance of equal-period spacings. We have also used Monte Carlo simulations to estimate the likelihood that the detected spacings could be produced randomly. Period transforms for nine of the Kepler stars indicate ℓ= 1 period spacings, with five also showing peaks for ℓ= 2 modes. 12 stars indicate ℓ= 1 modes using the Kolmogorov-Smirnov test while another shows solely ℓ= 2 modes. Monte Carlo results indicate that equal-period spacings are significant in 10 stars above 99 per cent confidence, and 13 of the 14 are above 94 per cent confidence. For 12 stars, the various methods find consistent period spacings to within the errors, two others show some inconsistencies, likely caused by binarity, and the last has significant detections but the mode assignment disagrees between the methods. We use asymptotic period spacing relationships to associate observed periods of variability with pulsation modes for ℓ= 1 and 2. From the Kepler first-year survey sample of 13 multiperiodic g-mode pulsators, five stars have several consecutive overtones making period spacings easy to detect, six others have fewer consecutive overtones but period spacings are readily detected, and two stars show marginal indications of equal-period spacings. We also examine a g-mode sdB pulsator observed by CoRoT with a rich pulsation spectrum, and our tests detect regular period spacings. We use Monte Carlo simulations to estimate the significance of the detections in individual stars. From the simulations, it is determined that regular period spacings in 10 of the 14 stars are very unlikely to be random, another two are moderately unlikely to be random and two are mostly unconstrained. We find a common ℓ= 1 period spacing spanning a range from 231 to 272 s allowing us to correlate pulsation modes with 222 periodicities and that the ℓ= 2 period spacings are related to the ℓ= 1 spacings by the asymptotic relationship forumla⁠. We briefly discuss the impact of equal-period spacings which indicate low-degree modes with a lack of significant mode trappings

    Precision Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetries A2

    Get PDF
    We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 0.7 < Q^2 < 20 GeV^2 by scattering 29.1 and 32.3 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets. Our measured g2 approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3 reduced matrix elements d2p and d2n are less than two standard deviations from zero. The data are inconsistent with the Burkhardt-Cottingham sum rule if there is no pathological behavior as x->0. The Efremov-Leader-Teryaev integral is consistent with zero within our measured kinematic range. The absolute value of A2 is significantly smaller than the sqrt[R(1+A1)/2] limit.Comment: 12 pages, 4 figures, 2 table

    Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2

    Full text link
    We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0 < Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is significantly smaller than the sqrt{R} positivity limit over the measured range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range 0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl

    Search for right-handed W bosons in top quark decay

    Full text link
    We present a measurement of the fraction f+ of right-handed W bosons produced in top quark decays, based on a candidate sample of ttˉt\bar{t} events in the lepton+jets decay mode. These data correspond to an integrated luminosity of 230pb^-1, collected by the DO detector at the Fermilab Tevatron ppˉp\bar{p} Collider at sqrt(s)=1.96 TeV. We use a constrained fit to reconstruct the kinematics of the ttˉt\bar{t} and decay products, which allows for the measurement of the leptonic decay angle ξ∗\theta^* for each event. By comparing the cos⁡ξ∗\cos\theta^* distribution from the data with those for the expected background and signal for various values of f+, we find f+=0.00+-0.13(stat)+-0.07(syst). This measurement is consistent with the standard model prediction of f+=3.6x10^-4.Comment: Submitted to Physical Review D Rapid Communications 7 pages, 3 figure

    Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England

    Get PDF
    The SARS-CoV-2 lineage B.1.1.7, designated variant of concern (VOC) 202012/01 by Public Health England1, was first identified in the UK in late summer to early autumn 20202. Whole-genome SARS-CoV-2 sequence data collected from community-based diagnostic testing for COVID-19 show an extremely rapid expansion of the B.1.1.7 lineage during autumn 2020, suggesting that it has a selective advantage. Here we show that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S gene target failures (SGTF) in community-based diagnostic PCR testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that B.1.1.7 has higher transmissibility than non-VOC lineages, even if it has a different latent period or generation time. The SGTF data indicate a transient shift in the age composition of reported cases, with cases of B.1.1.7 including a larger share of under 20-year-olds than non-VOC cases. We estimated time-varying reproduction numbers for B.1.1.7 and co-circulating lineages using SGTF and genomic data. The best-supported models did not indicate a substantial difference in VOC transmissibility among different age groups, but all analyses agreed that B.1.1.7 has a substantial transmission advantage over other lineages, with a 50% to 100% higher reproduction number

    Measurement of the Lifetime Difference in the B_s^0 System

    Get PDF
    We present a study of the decay B_s^0 -> J/psi phi We obtain the CP-odd fraction in the final state at time zero, R_perp = 0.16 +/- 0.10 (stat) +/- 0.02 (syst), the average lifetime of the (B_s, B_sbar) system, tau (B_s^0) =1.39^{+0.13}_{-0.16} (stat) ^{+0.01}_{-0.02} (syst) ps, and the relative width difference between the heavy and light mass eigenstates, Delta Gamma/Gamma = (Gamma_L - Gamma_H)/Gamma =0.24^{+0.28}_{-0.38} (stat) ^{+0.03}_{-0.04} (syst). With the additional constraint from the world average of the B_s^0$lifetime measurements using semileptonic decays, we find tau (B_s^0)= 1.39 +/- 0.06 ~ps and Delta Gamma/\Gamma = 0.25^{+0.14}_{-0.15}. For the ratio of the B_s^0 and B^0 lifetimes we obtain tau(B_s^0)/tau(B^0)} = 0.91 +/- 0.09 (stat) +/- 0.003 (syst).Comment: submitted to Phys. Rev. Lett. FERMILAB-PUB-05-324-

    Measurement of Semileptonic Branching Fractions of B Mesons to Narrow D** States

    Get PDF
    Using the data accumulated in 2002-2004 with the DO detector in proton-antiproton collisions at the Fermilab Tevatron collider with centre-of-mass energy 1.96 TeV, the branching fractions of the decays B -> \bar{D}_1^0(2420) \mu^+ \nu_\mu X and B -> \bar{D}_2^{*0}(2460) \mu^+ \nu_\mu X and their ratio have been measured: BR(\bar{b}->B) \cdot BR(B-> \bar{D}_1^0 \mu^+ \nu_\mu X) \cdot BR(\bar{D}_1^0 -> D*- pi+) = (0.087+-0.007(stat)+-0.014(syst))%; BR(\bar{b}->B)\cdot BR(B->D_2^{*0} \mu^+ \nu_\mu X) \cdot BR(\bar{D}_2^{*0} -> D*- \pi^+) = (0.035+-0.007(stat)+-0.008(syst))%; and (BR(B -> \bar{D}_2^{*0} \mu^+ \nu_\mu X)BR(D2*0->D*- pi+)) / (BR(B -> \bar{D}_1^{0} \mu^+ \nu_\mu X)\cdot BR(\bar{D}_1^{0}->D*- \pi^+)) = 0.39+-0.09(stat)+-0.12(syst), where the charge conjugated states are always implied.Comment: submitted to Phys. Rev. Let

    Measurement of the B0_s semileptonic branching ratio to an orbitally excited D_s** state, Br(B0_s -> Ds1(2536) mu nu)

    Get PDF
    In a data sample of approximately 1.3 fb-1 collected with the D0 detector between 2002 and 2006, the orbitally excited charm state D_s1(2536) has been observed with a measured mass of 2535.7 +/- 0.6 (stat) +/- 0.5 (syst) MeV via the decay mode B0_s -> D_s1(2536) mu nu X. A first measurement is made of the branching ratio product Br(b(bar) -> D_s1(2536) mu nu X).Br(D_s1(2536)->D* K0_S). Assuming that D_s1(2536) production in semileptonic decay is entirely from B0_s, an extraction of the semileptonic branching ratio Br(B0_s -> D_s1(2536) mu nu X) is made.Comment: 7 pages, 2 figures, LaTeX, version with minor changes as accepted by Phys. Rev. Let
    • 

    corecore