39 research outputs found

    Written information for patients (or parents of child patients) to reduce the use of antibiotics for acute upper respiratory tract infections in primary care

    Get PDF
    BackgroundAcute upper respiratory tract infections (URTIs) are frequently managed in primary care settings. Although many are viral, and there is an increasing problem with antibiotic resistance, antibiotics continue to be prescribed for URTIs. Written patient information may be a simple way to reduce antibiotic use for acute URTIs. ObjectivesTo assess if written information for patients (or parents of child patients) reduces the use of antibiotics for acute URTIs in primary care. Search methodsWe searched CENTRAL, MEDLINE, Embase, CINAHL, LILACS, Web of Science, clinical trials.gov, and the World Health Organization (WHO) trials registry up to July 2016 without language or publication restrictions. Selection criteriaWe included randomised controlled trials (RCTs) involving patients (or parents of child patients) with acute URTIs, that compared written patient information delivered immediately before or during prescribing, with no information. RCTs needed to have measured our primary outcome (antibiotic use) to be included. Data collection and analysisTwo review authors screened studies, extracted data, and assessed study quality. We could not meta-analyse included studies due to significant methodological and statistical heterogeneity; we summarised the data narratively. Main resultsTwo RCTs met our inclusion criteria, involving a total of 827 participants. Both studies only recruited children with acute URTIs (adults were not involved in either study): 558 children from 61 general practices in England and Wales; and 269 primary care doctors who provided data on 33,792 patient-doctor consultations in Kentucky, USA. The UK study had a high risk of bias due to lack of blinding and the US cluster-randomised study had a high risk of bias because the methods to allocate participants to treatment groups was not clear, and there was evidence of baseline imbalance. In both studies, clinicians provided written information to parents of child patients during primary care consultations: one trained general practitioners (GPs) to discuss an eight-page booklet with parents; the other conducted a factorial trial with two comparison groups (written information compared to usual care and written information plus prescribing feedback to clinicians compared to prescribing feedback alone). Doctors in the written information arms received 25 copies of two-page government-sponsored pamphlets to distribute to parents. Compared to usual care, we found moderate quality evidence (one study) that written information significantly reduced the number of antibiotics used by patients (RR 0.53, 95% CI 0.35 to 0.80; absolute risk reduction (ARR) 20% (22% versus 42%)) and had no significant effect on reconsultation rates (RR 0.79, 95% CI 0.47 to 1.32), or parent satisfaction with consultation (RR 0.95, 95% CI 0.87 to 1.03). Low quality evidence (two studies) demonstrated that written information also reduced antibiotics prescribed by clinicians (RR 0.47, 95% CI 0.28 to 0.78; ARR 21% (20% versus 41%); and RR 0.84, 95% CI 0.81 to 0.86; 9% ARR (45% versus 54%)). Neither study measured resolution of symptoms, patient knowledge about antibiotics for acute URTIs, or complications for this comparison. Compared to prescribing feedback, we found low quality evidence that written information plus prescribing feedback significantly increased the number of antibiotics prescribed by clinicians (RR 1.13, 95% CI 1.09 to 1.17; absolute risk increase 6% (50% versus 44%)). Neither study measured reconsultation rate, resolution of symptoms, patient knowledge about antibiotics for acute URTIs, patient satisfaction with consultation or complications for this comparison. Authors' conclusionsCompared to usual care, moderate quality evidence from one study showed that trained GPs providing written information to parents of children with acute URTIs in primary care can reduce the number of antibiotics used by patients without any negative impact on reconsultation rates or parental satisfaction with consultation. Low quality evidence from two studies shows that, compared to usual care, GPs prescribe fewer antibiotics for acute URTIs but prescribe more antibiotics when written information is provided alongside prescribing feedback (compared to prescribing feedback alone). There was no evidence addressing resolution of patients' symptoms, patient knowledge about antibiotics for acute URTIs, or frequency of complications. To fill evidence gaps, future studies should consider testing written information on antibiotic use for adults with acute URTIs in high- and low-income settings provided without clinician training and presented in different formats (such as electronic). Future study designs should endeavour to ensure blinded outcome assessors. Study aims should include measurement of the effect of written information on the number of antibiotics used by patients and prescribed by clinicians, patient satisfaction, reconsultation, patients' knowledge about antibiotics, resolution of symptoms, and complications.</p

    Microsatellite Markers Associated with Resistance to Marek’s Disease in Commercial Layer Chickens

    Get PDF
    The objective of the current study was to identify QTL conferring resistance to Marek\u27s disease (MD) in commercial layer chickens. To generate the resource population, 2 partially inbred lines that differed in MD-caused mortality were intermated to produce 5 backcross families. Vaccinated chicks were challenged with very virulent plus (vv+) MD virus strain 648A at 6 d and monitored for MD symptoms. A recent field isolate of the MD virus was used because the lines were resistant to commonly used older laboratory strains. Selective genotyping was employed using 81 microsatellites selected based on prior results with selective DNA pooling. Linear regression and Cox proportional hazard models were used to detect associations between marker genotypes and survival. Significance thresholds were validated by simulation. Seven and 6 markers were significant based on proportion of false positive and false discovery rate thresholds less than 0.2, respectively. Seventeen markers were associated with MD survival considering a comparison-wise error rate of 0.10, which is about twice the number expected by chance, indicating that at least some of the associations represent true effects. Thus, the present study shows that loci affecting MD resistance can be mapped in commercial layer lines. More comprehensive studies are under way to confirm and extend these results

    Identifying the genetic basis for resistance to avian influenza in commercial egg layer chickens

    Get PDF
    Two highly pathogenic avian influenza (HPAI) outbreaks have affected commercial egg production flocks in the American continent in recent years; a H7N3 outbreak in Mexico in 2012 that caused 70% to 85% mortality and a H5N2 outbreak in the United States in 2015 with over 99% mortality. Blood samples were obtained from survivors of each outbreak and from age and genetics matched non-affected controls. A total of 485 individuals (survivors and controls) were genotyped with a 600 k single nucleotide polymorphism (SNP) array to detect genomic regions that influenced the outcome of highly pathogenic influenza infection in the two outbreaks. A total of 420458 high quality, segregating SNPs were identified across all samples. Genetic differences between survivors and controls were analyzed using a logistic model, mixed models and a Bayesian variable selection approach. Several genomic regions potentially associated with resistance to HPAI were identified, after performing multidimensional scaling and adjustment for multiple testing. Analysis conducted within each outbreak identified different genomic regions for resistance to the two virus strains. The strongest signals for the Iowa H5N2 survivor samples were detected on chromosomes 1, 7, 9 and 15. Positional candidate genes were mainly coding for plasma membrane proteins with receptor activity and were also involved in immune response. Three regions with the strongest signal for the Mexico H7N3 samples were located on chromosomes 1 and 5. Neuronal cell surface, signal transduction and immune response proteins coding genes were located in the close proximity of these regions

    DNA replication stress restricts ribosomal DNA copy number

    Get PDF
    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number

    The worldwide clinical trial research response to the COVID-19 pandemic - the first 100 days

    Get PDF
    Background: Never before have clinical trials drawn as much public attention as those testing interventions for COVID-19. We aimed to describe the worldwide COVID-19 clinical research response and its evolution over the first 100 days of the pandemic. Methods: Descriptive analysis of planned, ongoing or completed trials by April 9, 2020 testing any intervention to treat or prevent COVID-19, systematically identified in trial registries, preprint servers, and literature databases. A survey was conducted of all trials to assess their recruitment status up to July 6, 2020. Results: Most of the 689 trials (overall target sample size 396,366) were small (median sample size 120; interquartile range [IQR] 60-300) but randomized (75.8%; n=522) and were often conducted in China (51.1%; n=352) or the USA (11%; n=76). 525 trials (76.2%) planned to include 155,571 hospitalized patients, and 25 (3.6%) planned to include 96,821 health-care workers. Treatments were evaluated in 607 trials (88.1%), frequently antivirals (n=144) or antimalarials (n=112); 78 trials (11.3%) focused on prevention, including 14 vaccine trials. No trial investigated social distancing. Interventions tested in 11 trials with >5,000 participants were also tested in 169 smaller trials (median sample size 273; IQR 90-700). Hydroxychloroquine alone was investigated in 110 trials. While 414 trials (60.0%) expected completion in 2020, only 35 trials (4.1%; 3,071 participants) were completed by July 6. Of 112 trials with detailed recruitment information, 55 had recruited <20% of the targeted sample; 27 between 20-50%; and 30 over 50% (median 14.8% [IQR 2.0-62.0%]). Conclusions: The size and speed of the COVID-19 clinical trials agenda is unprecedented. However, most trials were small investigating a small fraction of treatment options. The feasibility of this research agenda is questionable, and many trials may end in futility, wasting research resources. Much better coordination is needed to respond to global health threats

    Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis.

    Get PDF
    Venous abnormalities contribute to the pathophysiology of several neurological conditions. This paper reviews the literature regarding venous abnormalities in multiple sclerosis (MS), leukoaraiosis, and normal-pressure hydrocephalus (NPH). The review is supplemented with hydrodynamic analysis to assess the effects on cerebrospinal fluid (CSF) dynamics and cerebral blood flow (CBF) of venous hypertension in general, and chronic cerebrospinal venous insufficiency (CCSVI) in particular.CCSVI-like venous anomalies seem unlikely to account for reduced CBF in patients with MS, thus other mechanisms must be at work, which increase the hydraulic resistance of the cerebral vascular bed in MS. Similarly, hydrodynamic changes appear to be responsible for reduced CBF in leukoaraiosis. The hydrodynamic properties of the periventricular veins make these vessels particularly vulnerable to ischemia and plaque formation.Venous hypertension in the dural sinuses can alter intracranial compliance. Consequently, venous hypertension may change the CSF dynamics, affecting the intracranial windkessel mechanism. MS and NPH appear to share some similar characteristics, with both conditions exhibiting increased CSF pulsatility in the aqueduct of Sylvius.CCSVI appears to be a real phenomenon associated with MS, which causes venous hypertension in the dural sinuses. However, the role of CCSVI in the pathophysiology of MS remains unclear

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials
    corecore