91 research outputs found

    Lateral and vertical heterogeneity in the lithospheric mantle at the northern margin of the Pannonian Basin reconstructed from peridotite xenolith microstructures

    Get PDF
    International audienceThis study analyzes the microstructures and deformational characteristics of spinel peridotite xenoliths from the Nógrád‐Gömör Volcanic Field (NGVF), located on the northern margin of a young extensional basin presently affected by compression. The xenoliths show a wide range of microstructures, bearing the imprints of heterogeneous deformation and variable degrees of subsequent annealing. Olivine crystal preferred orientations (CPOs) have dominantly [010]‐fiber and orthorhombic patterns. Orthopyroxene CPOs indicate coeval deformation with olivine. Olivine J indices correlate positively with equilibration temperatures, suggesting that the CPO strength increases with depth. In contrast, the intensity of intragranular deformation in olivine varies as a function of the sampling locality. We interpret the microstructures and CPO patterns as recording deformation by dislocation creep in a transpressional regime, which is consistent with recent tectonic evolution in the Carpathian‐Pannonian region due to the convergence between the Adria microplate and the European platform. Postkinematic annealing is probably linked to percolation of metasomatism by mafic melts through the upper mantle of the NGVF prior to the eruption of the host alkali basalt. Elevated equilibration temperatures in xenoliths from the central part of the volcanic field are interpreted to be associated with the last metasomatic event, which only shortly preceded the ascent of the host magma. Despite well‐developed olivine CPOs in the xenoliths, which imply a strong seismic anisotropy, the lithospheric mantle alone cannot account for the shear wave splitting delay times measured in the NGVF, indicating that deformation in both the lithosphere and the asthenosphere contributes to the observed shear wave splitting

    Zircon U-Pb, geochemical and isotopic constraints on the age and origin of A- and I-type granites and gabbro-diorites from NW Iran

    Get PDF
    Highlights • There are Late Cretaceous granitoids and Paleocene A-type granites in NW Iran. • Different mechanisms are suggested for genesis of granitoids and A-type granites. • Subduction initiation and extension generated granitoids during the Late Cretaceous. Abstract The continental crust of NW Iran is intruded by Late Cretaceous I-type granites and gabbro-diorites as well as Paleocene A-type granites. SIMS and LA-ICPMS U-Pb analyses of zircons yield ages of 100–92 Ma (Late Cretaceous) for I-type granites and gabbro-diorites and 61–63 Ma (Paleocene) for A-type granites. Late Cretaceous gabbro-diorites (including mafic microgranular enclaves; MMEs) from NW Iran show variably evolved signatures. They show depletion in Nb and Ta on N-MORB-normalized trace-element spider-diagrams and have high Th/Yb ratios, suggesting their precursor magmas were generated in a subduction-related environment. Gabbro-diorites have variable zircon εHf(t) values of +1.2 to +8, δ18O of 6.4 to 7.4‰ and bulk rock εNd(t) of −1.4 to ~ +4.9. The geochemical and isotopic data attest to melting of subcontinental lithospheric mantle (SCLM) to generate near-primitive gabbros with radiogenic Nd isotopes (εNd(t) = ~ +4.9) and high Nb/Ta and Zr/Hf ratios, similar to mantle melts (Nb/Ta ~ 17 and Zr/Hf ~ 38). These mafic melts underwent further fractionation and mixing with crustal melts to generate Late Cretaceous evolved gabbro-diorites. Geochemical data for I-type granites indicate both Nb-Ta negative and positive anomalies along with enrichment in light REEs. These rocks are peraluminous and have variable bulk-rock εNd(t) (−1.4 to +1.3), zircon εHf(t) (+2.8 to +10.4) and δ18O (4.7–7.3‰) values, but radiogenic bulk rock Pb isotopes. The geochemical and isotopic signatures of these granites suggest interaction of mantle-derived mafic magmas (similar to near-primitive Oshnavieh gabbros) with middle-upper crust through assimilation-fractional crystallization (AFC) to produce Late Cretaceous I-type granites. Paleocene A-type granites have distinctive geochemical features compared to I-type granitoids, including enrichment in Nb-Ta, high bulk rock εNd(t) (+3.3 to +3.9) and zircon εHf(t) (+5.1 − +9.9) values. Alkaline granites are ferroan; they have low MgO, CaO, Sr, Ba and Eu concentrations and high total Fe2O3, K2O, Na2O, Al2O3, Ga, Zr, Nb-Ta, Th and rare earth element (REE) abundances and Ga/Al ratios. These rocks might be related to fractionation of a melt derived from a sub-continental lithospheric mantle, but which interacted with asthenosphere-derived melts. We suggest that subduction initiation and the resultant slab roll-back caused extreme extension in the overlying Iranian plate, induced convection in the mantle wedge and led to the decompression melting of SCLM. Rising mantle-derived magmas assimilated middle-upper crustal rocks. Fractionating mantle-derived magmas and contamination with crustal components produced evolved gabbro-diorites and I-type granites. In contrast, asthenospheric upwelling during the Paleocene provided heat for melting and interaction with SCLM to generate the precursor melts to the A-type granites

    FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS

    Get PDF
    During the LIGO and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type

    A century of trends in adult human height

    No full text
    Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5-22.7) and 16.5 cm (13.3-19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8-144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries

    Indian & Pacific MORB-type Mantle Beneath Australia: Relevance to Large-scale Convection

    No full text
    1 page(s

    Lithospheric Compositionand Structure from Mantle Samples

    No full text
    3 page(s

    Large-scale global convection in the mantle beneath Australia from 55 Ma to now

    No full text
    1 page(s
    corecore