155 research outputs found

    Cytogenetic analysis of ethanol-induced meiotic aneuploidy

    Get PDF

    Real-time feedback improves imagined 3D primitive object classification from EEG

    Get PDF
    Brain-computer interfaces (BCI) enable movement-independent information transfer from humans to computers. Decoding imagined 3D objects from electroencephalography (EEG) may improve design ideation in engineering design or image reconstruction from EEG for application in brain-computer interfaces, neuro-prosthetics, and cognitive neuroscience research. Object-imagery decoding studies, to date, predominantly employ functional magnetic resonance imaging (fMRI) and do not provide real-time feedback. We present four linked studies in a study series to investigate: (1) whether five imagined 3D primitive objects (sphere, cone, pyramid, cylinder, and cube) could be decoded from EEG; and (2) the influence of real-time feedback on decoding accuracy. Studies 1 (N=10) and 2 (N=3) involved a single-session and a multi-session design, respectively, without real-time feedback. Studies 3 (N=2) and 4 (N=4) involved multiple sessions, without and with real-time feedback. The four studies involved 69 sessions in total of which 26 sessions were online with real-time feedback (15,480 trials for offline and at least 6,840 trials for online sessions in total). We demonstrate that decoding accuracy over multiple sessions improves significantly with biased feedback (p=0.004), compared to performance without feedback. This is the first study to show the effect of real-time feedback on the performance of primitive object-imagery BCI

    The bovine paranasal sinuses: Bacterial flora, epithelial expression of nitric oxide and potential role in the in-herd persistence of respiratory disease pathogens

    Get PDF
    peer-reviewedThe bovine paranasal sinuses are a group of complex cavernous air-filled spaces, lined by respiratory epithelium, the exact function of which is unclear. While lesions affecting these sinuses are occasionally reported in cattle, their microbial flora has not been defined. Furthermore, given that the various bacterial and viral pathogens causing bovine respiratory disease (BRD) persist within herds, we speculated that the paranasal sinuses may serve as a refuge for such infectious agents. The paranasal sinuses of clinically normal cattle (n = 99) and of cattle submitted for post-mortem examination (PME: n = 34) were examined by microbial culture, PCR and serology to include bacterial and viral pathogens typically associated with BRD: Mycoplasma bovis, Histophilus somni, Mannheimia haemolytica and Pasteurella multocida, bovine respiratory syncytial virus (BRSV) and bovine parainfluenza-3 virus (BPIV-3). Overall, the paranasal sinuses were either predominantly sterile or did not contain detectable microbes (83.5%: 94.9% of clinically normal and 50.0% of cattle submitted for PME). Bacteria, including BRD causing pathogens, were identified in relatively small numbers of cattle (<10%). While serology indicated widespread exposure of both clinically normal and cattle submitted for PME to BPIV-3 and BRSV (seroprevalences of 91.6% and 84.7%, respectively), PCR identified BPIV-3 in only one animal. To further explore these findings we investigated the potential role of the antimicrobial molecule nitric oxide (NO) within paranasal sinus epithelium using immunohistochemistry. Expression of the enzyme responsible for NO synthesis, inducible nitric oxide synthase (iNOS), was detected to varying degrees in 76.5% of a sub-sample of animals suggesting production of this compound plays a similar protective role in the bovine sinus as it does in humans

    Risk factors associated with exposure to bovine respiratory disease pathogens during the peri-weaning period in dairy bull calves

    Get PDF
    peer-reviewedBackground Bovine respiratory disease (BRD) remains among the leading causes of death of cattle internationally. The objective of this study was to identify risk factors associated with exposure to BRD pathogens during the peri-weaning period (day (d)-14 to d 14 relative to weaning at 0) in dairy bull calves using serological responses to these pathogens as surrogate markers of exposure. Clinically normal Holstein-Friesian and Jersey breed bull calves (n = 72) were group housed in 4 pens using a factorial design with calves of different breeds and planes of nutrition in each pen. Intrinsic, management and clinical data were collected during the pre-weaning (d − 56 to d − 14) period. Calves were gradually weaned over 14 days (d − 14 to d 0). Serological analysis for antibodies against key BRD pathogens (BRSV, BPI3V, BHV-1, BHV-4, BCoV, BVDV and H. somni) was undertaken at d − 14 and d 14. Linear regression models (for BVDV, BPI3V, BHV-1, BHV-4, BCoV and H. somni) and a single mixed effect random variable model (for BRSV) were used to identify risk factors for changes in antibody levels to these pathogens. Results BRSV was the only pathogen which demonstrated clustering by pen. Jersey calves experienced significantly lower changes in BVDV S/P than Holstein-Friesian calves. Animals with a high maximum respiratory score (≥8) recorded significant increases in H. somni S/P during the peri-weaning period when compared to those with respiratory scores of ≤3. Haptoglobin levels of between 1.32 and 1.60 mg/ml at d − 14 were significantly associated with decreases in BHV-1 S/N during the peri-weaning period. Higher BVDV S/P ratios at d − 14 were significantly correlated with increased changes in serological responses to BHV-4 over the peri-weaning period. Conclusions Haptoglobin may have potential as a predictor of exposure to BHV-1. BRSV would appear to play a more significant role at the ‘group’ rather than ‘individual animal’ level. The significant associations between the pre-weaning levels of antibodies to certain BRD pathogens and changes in the levels of antibodies to the various pathogens during the peri-weaning period may reflect a cohort of possibly genetically linked ‘better responders’ among the study population

    The Extracellular Vesicles of the Helminth Pathogen, Fasciola hepatica: Biogenesis Pathways and Cargo Molecules Involved in Parasite Pathogenesis

    Get PDF
    Extracellular vesicles (EVs) released by parasites have important roles in establishing and maintaining infection. Analysis of the soluble and vesicular secretions of adult Fasciola hepatica has established a definitive characterization of the total secretome of this zoonotic parasite. Fasciola secretes at least two subpopulations of EVs that differ according to size, cargo molecules and site of release from the parasite. The larger EVs are released from the specialized cells that line the parasite gastrodermus and contain the zymogen of the 37 kDa cathepsin L peptidase that performs a digestive function. The smaller exosome-like vesicle population originate from multivesicular bodies within the tegumental syncytium and carry many previously described immunomodulatory molecules that could be delivered into host cells. By integrating our proteomics data with recently available transcriptomic data sets we have detailed the pathways involved with EV biogenesis in F. hepatica and propose that the small exosome biogenesis occurs via ESCRT-dependent MVB formation in the tegumental syncytium before being shed from the apical plasma membrane. Furthermore, we found that the molecular "machinery" required for EV biogenesis is constitutively expressed across the intramammalian development stages of the parasite. By contrast, the cargo molecules packaged within the EVs are developmentally regulated, most likely to facilitate the parasites migration through host tissue and to counteract host immune attack

    An MRS- and PET-guided biopsy tool for intraoperative neuronavigational systems

    Get PDF
    OBJECTIVEGlioma heterogeneity and the limitations of conventional structural MRI for identifying aggressive tumor components can limit the reliability of stereotactic biopsy and, hence, tumor characterization, which is a hurdle for developing and selecting effective treatment strategies. In vivo MR spectroscopy (MRS) and PET enable noninvasive imaging of cellular metabolism relevant to proliferation and can detect regions of more highly active tumor. Here, the authors integrated presurgical PET and MRS with intraoperative neuronavigation to guide surgical biopsy and tumor sampling of brain gliomas with the aim of improving intraoperative tumor-tissue characterization and imaging biomarker validation.METHODSA novel intraoperative neuronavigation tool was developed as part of a study that aimed to sample high-choline tumor components identified by multivoxel MRS and 18F-methylcholine PET-CT. Spatially coregistered PET and MRS data were integrated into structural data sets and loaded onto an intraoperative neuronavigation system. High and low choline uptake/metabolite regions were represented as color-coded hollow spheres for targeted stereotactic biopsy and tumor sampling.RESULTSThe neurosurgeons found the 3D spherical targets readily identifiable on the interactive neuronavigation system. In one case, areas of high mitotic activity were identified on the basis of high 18F-methylcholine uptake and elevated choline ratios found with MRS in an otherwise low-grade tumor, which revealed the possible use of this technique for tumor characterization.CONCLUSIONSThese PET and MRI data can be combined and represented usefully for the surgeon in neuronavigation systems. This method enables neurosurgeons to sample tumor regions based on physiological and molecular imaging markers. The technique was applied for characterizing choline metabolism using MRS and 18F PET; however, this approach provides proof of principle for using different radionuclide tracers and other MRI methods, such as MR perfusion and diffusion.</jats:sec

    Real-time feedback improves imagined 3D primitive object classification from EEG

    Get PDF
    Brain-computer interfaces (BCI) enable movement-independent information transfer from humans to computers. Decoding imagined 3D objects from electroencephalography (EEG) may improve design ideation in engineering design or image reconstruction from EEG for application in brain-computer interfaces, neuro-prosthetics, and cognitive neuroscience research. Object-imagery decoding studies, to date, predominantly employ functional magnetic resonance imaging (fMRI) and do not provide real-time feedback. We present four linked studies in a study series to investigate: (1) whether five imagined 3D primitive objects (sphere, cone, pyramid, cylinder, and cube) could be decoded from EEG; and (2) the influence of real-time feedback on decoding accuracy. Studies 1 (N = 10) and 2 (N = 3) involved a single-session and a multi-session design, respectively, without real-time feedback. Studies 3 (N = 2) and 4 (N = 4) involved multiple sessions, without and with real-time feedback. The four studies involved 69 sessions in total of which 26 sessions were online with real-time feedback (15,480 trials for offline and at least 6,840 trials for online sessions in total). We demonstrate that decoding accuracy over multiple sessions improves significantly with biased feedback (p = 0.004), compared to performance without feedback. This is the first study to show the effect of real-time feedback on the performance of primitive object-imagery BCI

    CDC Botswana : sharing another partnership success

    Get PDF
    CDC Botswana, in partnership with the Ministry of Health since 1995--for a safer, healthier Botswana.Publication date from document properties.CDCBotswanaSharesSuccess_19_07_12.pd

    Vestibular disease in dogs under UK primary veterinary care: Epidemiology and clinical management

    Get PDF
    Background Vestibular disease (VD), central or peripheral, can be a dramatic primary‐care presentation. Current literature describes mostly dogs examined in referral centers. Hypothesis/Objectives Describe the prevalence, presentation, clinical management, and outcomes of VD in dogs under primary veterinary care at UK practices participating in VetCompass. Animals Seven hundred and fifty‐nine vestibular cases identified out of 905 544 study dogs. Methods Retrospective cohort study. Potential VD cases clinically examined during 2016 were verified by reviewing clinical records for signalment, presenting clinical signs, treatments, and outcomes. Multivariable logistic regression was used to evaluate factors associated with VD. Results The overall prevalence of VD was 8 per 10 000 dogs (95% CI = 7‐9). Median age at first diagnosis was 12.68 years (interquartile range [IQR], 11.28‐14.64). Compared with crossbreeds, breeds with the highest odds of VD diagnosis included French Bulldogs (odds ratio [OR] = 9.25, 95% CI = 4.81‐17.76, P  < .001), Bulldogs (OR = 6.53, 95% CI = 2.66‐16.15, P  < .001), King Charles Spaniels (OR = 4.96, 95% CI = 2.52‐9.78, P  < .001), Cavalier King Charles Spaniels (OR = 3.56, 95% CI = 2.50‐5.06, P  < .001), and Springer Spaniels (OR = 3.37, 95% CI = 2.52‐4.52, P  < .001). The most common presenting signs were head tilt (69.8%), nystagmus (68.1%), and ataxia (64.5%). The most frequently used treatments were antiemetics (43.2%), systemic glucocorticoids (33.1%), antimicrobials (25%), and propentofylline (23.25%). There were 3.6% of cases referred. Improvement was recorded in 41.8% cases after a median of 4 days (IQR, 2‐10.25). Conclusions Our study identifies strong breed predispositions for VD. The low referral rates suggest that primary‐care data sources offer more generalizable information for benchmarking to help clinicians review their own clinical activities
    corecore