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ABSTRACT
Brain-computer interfaces (BCI) enable movement-independent information transfer from humans to 
computers. Decoding imagined 3D objects from electroencephalography (EEG) may improve design 
ideation in engineering design or image reconstruction from EEG for application in brain-computer 
interfaces, neuro-prosthetics, and cognitive neuroscience research. Object-imagery decoding studies, 
to date, predominantly employ functional magnetic resonance imaging (fMRI) and do not provide 
real-time feedback. We present four linked studies in a study series to investigate: (1) whether five 
imagined 3D primitive objects (sphere, cone, pyramid, cylinder, and cube) could be decoded from 
EEG; and (2) the influence of real-time feedback on decoding accuracy. Studies 1 (N = 10) and 2 (N = 3) 
involved a single-session and a multi-session design, respectively, without real-time feedback. Studies 
3 (N = 2) and 4 (N = 4) involved multiple sessions, without and with real-time feedback. The four 
studies involved 69 sessions in total of which 26 sessions were online with real-time feedback (15,480 
trials for offline and at least 6,840 trials for online sessions in total). We demonstrate that decoding 
accuracy over multiple sessions improves significantly with biased feedback (p = 0.004), compared to 
performance without feedback. This is the first study to show the effect of real-time feedback on the 
performance of primitive object-imagery BCI.
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1. Introduction

Brain-computer interface (BCI) research aims to 
develop systems that enable movement-independent 
communication between the user and a computer/ 
device, using information encoded in neural signals 
[1]. BCIs have been investigated across a variety of 
application areas such as classifying the semantic 
and emotional content of imagined representations 
[2], monitoring cognitive state for lie detection [3], 
written communication using BCI spellers [4], 
wheelchair control [5], controlling objects in real- 
world situations [6, 7] or virtual spaces [8–10], 
neurogaming [11], enabling assessment in pro-
longed disorders of consciousness (PDoC) [12] and 
enhancing recovery following stroke [13], to name 
just a few. However, only a few studies have inves-
tigated the detection of visual imagery and working 
memory [14], the classification of mentally ima-
gined real-world objects [15, 16], the shape of ima-
gined 3D primitive objects [17–19] or different 
image categories [20]. For example, the application 

of imagined object classification could be a precur-
sor for applications of BCI in computer-aided 
design (CAD), computer-aided manufacturing 
(CAM) [21] and computer-aided engineering design 
(CAED) [22, 23] along with augmented virtual rea-
lity (AVR) [24, 25] to inform alternative and neural 
informed design ideation and visual creativity 
[25, 26]. In this work, we focus on the state-of 
the-art in decoding shape/object imagery from elec-
troencephalography (EEG).

A noninvasive BCI system commonly uses voluntary 
modulation of electroencephalography (EEG) signals for 
controlling an electronic device. However, to date, most 
studies investigating the relationship between brain activity 
and visual object imagery tasks rely on functional magnetic 
resonance imaging (fMRI) which has a lower temporal 
resolution than EEG neuroimaging, making it less suitable 
for a BCI [27]. fMRI does enable measuring activity from 
deep brain structures, providing enhanced spatial resolu-
tion compared to EEG. Therefore, existing fMRI studies 
underpin the rationale for investigating various
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neuroimaging modalities to understand neural modula-
tions in object imagery tasks and are thus reviewed here.

1.1. fMRI studies

Visual object imagery is related to several brain functions, 
such as working memory [28–31], shape-specific proces-
sing in the visual cortex [32], imagined and perceptual 
scene-specific brain activity [33], mental imagery during 
dreaming [34], visual search [35], and the relationship 
between mental imagery and emotions [36]. Visual per-
ception and mental imagery activate similar brain patterns 
[37–42]. Although the primary visual cortex has an impor-
tant role in mental imagery and perception [43, 44], the 
occipitotemporal cortex is shown to encode sensory, 
semantic, and emotional properties, which are important 
for both [2]. The relationship between working memory 
and long-term memory is reviewed by Bradly and collea-
gues [45], highlighting that connectivity between short- 
term memory and long-term memory is important for a 
better understanding of the mechanism underlying mental 
imagery and perceptual processes. Furthermore, the simi-
larity of fMRI patterns obtained during the perception of 
objects and their equivalent word representation has been 
demonstrated [46]. Mitchell and Cusack (2008) found that 
the limited capacity of visual short-term memory for 
attended objects is correlated with neural activity in the 
posterior parietal cortex [47]. Moreover, the occipitotem-
poral cortex is not only important in mental imagery and 
visual perception but also in object-related identification 
[48]. Furthermore, the hippocampus may also affect these 
processes [49], as well as the frontal and parietal cortex 
[50]. These findings suggest that different spatio-temporal 
patterns, at various levels of abstraction in terms of neural 
signaling, should be evaluated to determine if BCIs can 
exploit the associated features to enable direct movement- 
independent interaction between the user and a computer 
or device.

Color, size, and rotation of perceived or imagined 3D 
objects may also prove useful for developing a BCI that 
aims to decode imagined 3D objects. It has been sug-
gested that the physical size of visualized objects might 
link with the occipitotemporal cortex and is represented 
in the ventral stream [51, 52]. A recent study [53] 
demonstrated that object size-related neural responses 
are organized in bilateral topographic maps, with simi-
lar cortical extents responding to large and small 
objects. The importance of the visual cortex in color 
representation is highlighted in several papers [54–56]. 
Bird et al., 2014 [57] showed that the visual cortex 

responded only to the size of the color differences 
while color categories, such as blue and green, are 
encoded by regions in the frontal lobe. One other 
important property of mental imagery and visual per-
ception is mental rotation. The rotation of imagined 
objects (object-rotation) and rotation of the viewpoint 
of the subjects (self-rotation) have been studied [58]. 
The results show that the primary motor cortex (M1) 
has an important role in an object-rotation imagery 
task. At the same time, the sensorimotor area (SMA) is 
important for the self-rotation imagery task.

Charest et al. 2014 [59] indicated that individual 
differences in the early visual cortex and human inferior 
temporal cortex were involved in the visual detection of 
particular objects. With this observation, they empha-
sized that the individual-specific sensation of the envir-
onment might be reflected in an individually unique 
neural pattern in visual cortical areas. Another fMRI 
study [34] demonstrated that perceived or visualized 
objects could be classified using hierarchical visual fea-
tures. This method demonstrated that objects could be 
categorized based on the sameness of the objects’ prop-
erties and the properties of an object that had been 
viewed in a previous training session. As shown, several 
properties are involved in mental imagery or visual 
perception [34], which might relate to different types 
of brain activity such as shape-specific visual memory 
[32] or object size-specific information processing 
[51, 53]. Due to the variety of properties involved in 
the mental imagery of real-world objects, a comprehen-
sive feature selection strategy is likely required to enable 
accurate detection, or decoding, of 3D object imagery 
from noninvasive neural recordings in practical end- 
user BCI applications.

1.2. EEG studies

As discussed above, the majority of mental imagery 
studies employ fMRI techniques [28 - 59] and only a 
very limited number of studies have focused on decod-
ing mentally imagined real-world objects [15, 16], the 
shape of primitive objects [17–19], or different image 
categories [20] from electroencephalography (EEG).

Kosmyna et al. [15] used twenty-six participants for 
the offline classification of visual observation and ima-
gery involving two real-world objects (flower and ham-
mer), reporting a decoding accuracy (DA) of 61.7 ±  
10.5% (M±SD) for visual observation and 55.7 ± 6.8% 
(M±SD) for visual imagery (theoretical chance level 
50.0%). Llorella et al. [16] reported a DA of 
60.5 ± 13.3% (M±SD) for four participants in offline
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classification of four real-world objects (tree, house, 
plane, and dog) plus the relaxation state from EEG 
(theoretical chance level 20.0%). In [16], the offline 
decoder involved a convolutional neural network 
(CNN) to obtain the reconstruction of the images of 
the imagined real-world object and a genetic algorithm 
(GA) to find the optimal hyperparameters of the CNN. 
Regarding shape classification, Esfahani and 
Sundararajan [17] focused on the offline classification 
of five primitive objects (sphere, cone, pyramid, cylin-
der, and cube) from EEG, using an Emotiv 14-channel 
EEG neuroheadset [60]. They achieved an offline DA of 
44.6 ± 6.6% (M±SD) for ten participants (theoretical 
chance level 20.0%). Bang et al. [18], with four partici-
pants, achieved a DA of 32.6 ± 7.1% (M±SD) for offline 
classification of six colored primitive geometric symbols 
(red ‘O’, white ‘X’, yellow ‘-’, blue ‘Δ’, light blue ‘+’ and 
green ‘|’ (theoretical chance level 16.7%) using a CNN. 
Llorella et al. [19], using a CNN and the black hole 
search algorithm for the classification of two simple 
2D geometric objects with eighteen participants, 
obtained an offline DA of 69.6 ± 8.4% (M±SD) (theore-
tical chance level 50.0%), and classification of seven 
simple 2D geometric objects with seven participants 
obtained an offline DA of 35.1 ± 7.0% (M±SD) (theore-
tical chance level 14.3%). Lee et al. [20] investigated the 
classification accuracy during visual perception and 
visual imagination in three image categories using 
three different images per class (i.e. real-world objects: 
airplane, cup, tree; numeric digits: monochrome one, 
three, five; colored 2D shapes: red heart, yellow star, 
white triangle). They compared the following five clas-
sifiers: EEGNet, convolutional neural network (CNN), 
Multi-Rocket, MobileNet, and support vector machine 
(SVM). The highest DA was obtained with the 
MultiRocket framework. With seven participants, they 
achieved a classification DA of 57.0% for perception in 
three categories, and a DA of 46.4% for visual imagery 
(theoretical chance level 33.3%). A shape imagery detec-
tion application, for example, a BCI-controlled CAD or 
CAED application, presents a requirement where the 
brain response is classified online in real time whereas 
all the studies reviewed above involve a single-session 
offline assessment without providing real-time feedback 
to the participant (and/or a controlled BCI application) 
regarding the actual decoded object.

To address this shortcoming in our understanding of 
the effect of online classification and feedback when 
decoding shape imagery, as an extension of our pilot 
study [61], we developed an online EEG-based BCI to 
investigate decoding five imagined 3D primitive objects 
(sphere, cone, pyramid, cylinder and cube) from EEG to 

determine if the separability of shape-specific EEG mod-
ulations is enhanced by real-time feedback to partici-
pants. We carried out our research using a four-study 
series wherein the paradigm was improved between each 
study in the series. The offline pilot paradigm was tested 
and evaluated in studies 1 and 2 involving a single-session 
and a multi-session scenario, respectively, in which no 
feedback was applied. The pilot version of the online 
paradigm was introduced in study 3 and, based on the 
experience gained, it was refined and gamified in study 4. 
In addition to presenting an investigation involving the 
classification of imagined objects online in real time using 
BCI, we provide a comprehensive analysis for the identi-
fication of frequency bands and cortical areas engaged in 
the visual imagery of primitive objects. The results serve 
as a basis for enabling further investigation into the 
decoding of imagined objects for applications in CAD, 
CAM, CAED, or AVR systems.

2. Material and methods

2.1. Participants

Ten volunteers (male (n = 7) and female (n = 3), aged 26– 
44 years) participated in the first offline study (study 1), 
three male volunteers (aged 30–44 years) participated in 
the second offline study (study 2), two volunteers (one 
male aged 21, and one female aged 20) participated in 
the first online study (study 3), and four male volunteers 
(aged 23–34 years) participated in the second online study 
(study 4). There were sixteen participants in total, of which 
three participated in more than one study (Supplementary 
Table 1). The experiments were conducted in the Spatial 
Computing and Neurotechnology Innovation Hub 
(SCANi-hub) at the Intelligent Systems Research Centre 
(ISRC), Ulster University, United Kingdom. Before the 
beginning of the first session, participants were presented 
with information about the experimental protocol which 
they were asked to read. Those who wished to participate 
gave consent by signing an informed consent form that 
had been approved by the Ulster University research ethics 
committee (UREC). All participants were healthy and had 
normal, or corrected to normal, vision. Participants were 
recruited for each study separately. They were informed 
about the session number and time requirements of each 
session. Based on discussions with participants, we believe 
that each participant was motivated to provide the best 
performance during each session. Supplementary Table 1 
provides information about the dominant hand, gender, 
age and BCI experiences of the participants in the study 
series.

BRAIN-COMPUTER INTERFACES 3



2.2. Experimental paradigm

Study 1 (N = 10) comprised one offline session. Study 2 
(N = 3) comprised three offline sessions. Study 3 (N = 2) 
comprised eight offline sessions and seven online ses-
sions. Finally, study 4 (N = 4) comprised two offline 
sessions and three online sessions. Table 1 summarizes 
the duration of sessions performed in studies 1–4.

In each study, each session lasted approximately two 
hours, including EEG preparation time. Before the begin-
ning of the experiments, participants were asked to look 
forward and maintain a constant head position, avoid teeth 
grinding, minimize unnecessary movements during task 
performance, focus with eyes on the middle of the screen 
(indicated with a fixation cross before the task during the 
resting period) and to avoid eye blinks during object 
imagery tasks. Participants were asked to blink after the 
task end indicator cue if possible. In each session, the 
participant was seated in an armchair positioned 1.5 m in 
front of a Fujitsu Siemens B22W–5 ECO 22” LCD moni-
tor. For task performance, the participant was asked to 
perform visual mental imagery of the actual target object in 
3D (i.e. to mentally project the 3D shape of the target 
object on the middle of the screen, as it would be seen 
there). Participants who reported difficulty visualizing the 
object in 3D were asked to imagine the object in 2D. The 
offline datasets recorded in studies 3 and 4 were used to 
prepare an initial calibration of the BCI setup for the online 
sessions in the associated study. The impact of feedback on 
subjects’ performance across multiple-session sessions was 
a central research focus for the current study.

The structure of the paradigm was similar for studies 
1–4. However, some elements of the paradigm evolved 
from study to study. In the following section, we 
describe the experimental paradigm that was applied 
to the final study (study 4). The differences between 
study 4 and the previous three studies are summarized 
in Section 2.2.2.

2.2.1. Timing of the experimental paradigm for study 
4
The experimental paradigm comprised three runs, each 
run comprising four blocks, and was presented in a 
gamified format as described below. Ten seconds before 

commencing each block, a white fixation cross was 
presented in the center of the screen, and a voice mes-
sage played to inform the subject the block was about to 
begin. Each block comprised the following sub-blocks: 
one block initialization (involving a trial triplet, i.e. 
three trials) and ten further sub-blocks (involving ten 
trial triplets, i.e. thirty trials). In the block initialization 
sub-block, three of the five 3D primitive objects (sphere, 
cone, pyramid, cylinder, and cube; Figure 1) were used 
as target objects in randomized order. The paradigm 
was designed using eleven trial triplets to maintain the 
participant’s attention using a gamified scenario to 
enhance engagement and motivation [62], rather than 
presenting a monotonous series of thirty-three single 
trials. The ten trial triplets, comprising six repetitions 
of the five 3D primitive objects in randomized order, 
were used for the main analysis. The block initialization 
trials were not used in the main analysis because at the 
beginning of the block, after a long resting period, the 
subjects’ task-related EEG pattern may differ from the 
patterns generated during continuous object imagery 
task performance.

The timing of a trial, and an example of how the 
screen content varied during the trial, are presented 
for the offline and online paradigms in Figures 2 and 
3, respectively. At the beginning of each sub-block, a 
white fixation cross (in the middle) and three gray- 
colored 3D primitive objects (on the left side) were 
displayed on the screen. The gray-colored objects illu-
strated the target triplet for the current sub-block. 
After a 2s pause, the fixation cross was replaced in 
the middle with a blue replicate of the first (bottom- 
most) target object for a duration of 1s, indicating the 
next target for the oncoming task – and then disap-
peared, indicating the beginning of the object imagery 
task. During the imagery task, the middle of the screen 
was set to empty for 3s during the task period. The 
end of the task period was indicated with a 200 ms 
auditory tone (6 kHz beep). In parallel with the onset 
of the auditory tone, for the offline paradigm, the 
target object was displayed once again in the middle 
of the screen for 1s. This second appearance of the 
target object was replaced in the online paradigm with 
the decoded object to provide visual feedback. After a

Table 1. The number and duration of sessions performed in studies 1–4.

Study Subjects

Number of sessions (and duration of sessions)
Total 

durationOffline (Gap) Delayed offline (Gap) Online

Study 1 10 1 - - - - N/A
Study 2 3 3 (1 week) - - - - 1 week

Study 3 2 7 (2 weeks) (2 weeks) 1 (2 days) 7 (2 weeks) 6 weeks
Study 4 4 2 (3 days) - - (2 days) 3 (5 days) 10 days

4 A. KORIK ET AL.



1s delay, the target object was replaced with the fixa-
tion cross, and the color of the corresponding target 
on the left side of the screen, for the offline paradigm, 
changed to blue, indicating the trial had been com-
pleted. For the online paradigm, the color of the 
corresponding target changed to blue only if the actual 
task was successful. Otherwise, the corresponding tar-
get changed to yellow and the incorrectly decoded 

object was moved from the middle to the right side 
of the screen. Gamification was achieved through this 
stacking of correctly identified objects with the same 
color. All trials in each trial triplet were executed in 
the same way as described above.

Each 23s sub-block (Figure 4a) comprises a sub-block 
initialization pause and three trials. Each 260s block 
(Figure 4b) comprises a block initialization voice

Figure 1. Illustration of five 3D primitive objects displayed in studies presented in this paper.

Figure 2. The offline experimental paradigm. (a) An example of the screen layout during offline task performance. (b) The timing of an 
offline trial. (c) An example of how the screen content varied during the second offline trial of a sub-block.

BRAIN-COMPUTER INTERFACES 5



Figure 3. The online experimental paradigm. (a) An example of the screen layout during online task performance. (b) The timing of an 
online trial. (c) An example of how the screen content changed during the second online trial of a sub-block. In this example, the result 
of the first trial was successful as the color of the bottom-most object (cube) on the left side of the screenshots is blue. The result of the 
(second) trial indicates an unsuccessful trial as the object (pyramid) is different from the target object (cylinder), and the color of the 
middle object on the left side (c) (cylinder) changed to pale yellow.

Figure 4. The timing of the experiment in a session. (a) Timing of a sub-block. (b) Timing of a block. (c) Timing of a run. (d) Timing of 
the experiment.

6 A. KORIK ET AL.



message, a block initialization sub-block, and ten sub- 
blocks for the analysis. Each 20-minute run (Figure 4c) 
comprises four blocks and three inter-block resting per-
iods (IBR: 50s each). During IBR, the participants were 
asked to relax and not to move or talk. A session com-
prised three runs, which were separated by inter-run 
resting (IRR) periods (Figure 4d). The length of IRRs 
was determined by the participant (typically 5 minutes). 
Thus, the total duration of an offline session, comprising 
three runs and two inter-run resting periods, was around 
70 minutes, involving 72 trials for each class (i.e. 360 trials 
in total) (Figure 4).

2.2.2. Differences in the experimental paradigms 
used for studies 1–4
Although each of the paradigms was mainly consistent, 
certain elements evolved during the research from study 1 
to study 4, as described below and summarized in Table 2.

● The appearance of the objects displayed on the 
screen was refined after study 2 to improve the 
appearance of the presented objects. The 3D pri-
mitive objects for studies 1-2 and studies 3-4 are 
presented in Figure 1.

● In studies 1 and 2, the thirty trials were presented as 
a continuous series (i.e. the trial triplet structure was 
not used). Therefore, the target triplet (presented in 
Figure 2a on the left side of the screen) and the 2s 
trial triplet initialization pause were not applied to 
studies 1 and 2. This was introduced in studies 3 and 
4 to engage participants through gamification of the 
task.

● The block initialization sub-block (i.e. the extra 
trial triplet) was added to the paradigm only in 
studies 3 and 4.

● When a participant failed a task in the online ses-
sions of study 3, the task was repeated once to give 
the participant a second attempt to achieve the 
correct response. As repeated tasks increased the 
duration of the blocks significantly, the number of 
trials in the online sessions of study 3 was reduced 
in each block from thirty to fifteen. To avoid the 

reduction in trials, the repetition of failed tasks was 
not applied to study 4.

2.3. Data acquisition

EEG was recorded from 30 channels, and electrooculo-
graphy (EOG) was recorded from two channels using 32 
active EEG sensors (gLadybird) with two cross-linked 16- 
channel g.BSamp bipolar EEG amplifiers and two AC 
type g.GAMMboxes. The EEG reference electrode was 
positioned on the left earlobe. The EEG was amplified 
(gain: 20000), filtered (Butterworth, 0.5-100 Hz, eighth 
order), and sampled (A/D resolution: 24 Bits, sampling 
rate: 250 samples/s). The ground electrode was positioned 
at AFz according to the international 10/20 EEG stan-
dard. The EEG montage is illustrated in Figure 5.

The communication between a Simulink [63] mod-
ule that was used for EEG data acquisition and online 
signal processing and the experimental protocol appli-
cation in Unity 3D Game Engine [64] was managed with 
the user datagram protocol (UDP).

2.4. Offline signal processing

2.4.1. Multi-class classification using FBCSP
2.4.1.1 EEG signal processing and trial validation. the 
quality of the recorded EEG was inspected manually, 
and EEG channels with high-level noise (>200 mV) 
were removed from further processing. Recorded sig-
nals were band-pass filtered in six non-overlapped 
EEG bands (0.5-4 Hz (delta), 4-8 Hz (theta), 8-12 Hz 
(mu), 12-18 Hz (low beta), 18-28 Hz (high beta), and 
28-40 Hz (low gamma)) with Simulink [63] using 
high-pass and low-pass finite impulse response (FIR) 
filters (band-pass attenuation 0 dB, band-stop attenua-
tion 60 dB). To reduce the size of the EEG dataset, the 
preprocessed EEG dataset was downsampled from 
250 Hz to 125 Hz. Reference (baseline) and task- 
related time intervals between −4s (prior) and 5s 
(after) the onset of the object imagery task were 
epoched out from the frequency-filtered EEG dataset 
for each EEG channel and stored. The quality of the

Table 2. Differences in the experimental paradigms used for studies 1–4.

Feedback in studies Displayed objects Trial triplet structure
Block init. 
sub-block Trials/block Trial repetition after a failed trial

Study 1 Offline Version 1 N/A N/A 30 N/A
Study 2 Offline

Study 3 Offline Version 2 Used Used 30 N/A
Online 15 Repeated

Study 4 Offline 30 N/A

Online

BRAIN-COMPUTER INTERFACES 7



EEG was inspected manually for each trial, and trials 
containing visually obvious artifacts overlapping the 
task period (i.e. between −2s (prior) and 3s (after) the 
onset of the object imagery task) were removed. 
Spatial filtering: EEG decoding was performed using 
filter-bank common spatial patterns (FBCSP) [65], a 
well-established classification technique that enables 
discrimination between different types of imagined 
movements [66]. FBCSP was used to create spatial 
filters that maximize the discriminability of two 
classes by maximizing the variance of band-pass fil-
tered EEG signals from one class while minimizing 
their variance for the other classes [67, 68]. A max-
imum of three CSP filter pairs for each 2-class classi-
fier for each frequency band was used. Feature 
extraction: for studies 1 and 2, the time-varying log- 
variance of the CSP filtered EEG was calculated, in 
three separate analyses, using a 500 ms, 1s, or 2s 
width sliding window over the epochs with a 200 ms 
time lag between two windows. Based on experiences 
gained from studies 1 and 2, the 500 ms option was 

omitted in studies 3 and 4. Feature selection: the 
mutual information (MI) between features and the 
associated target class was estimated using a quantized 
feature space [69] to identify a subset of features that 
maximize classification accuracy. 2-class classification: 
a regularized LDA (RLDA) algorithm using the RCSP 
toolbox [68] was used to create a linear hyperplane to 
separate data from two classes where the class 
assigned to an unseen feature vector depends on the 
polarity of the classifier output, determined by posi-
tion for the hyperplane [70]. Multi-class classifica-
tion: the multi-class classification module involves 
multiple 2-class classifiers (target vs non-target 
classes) to separate each target class from the other 
(non-target) classes. Thus, the number of 2-class clas-
sifiers equaled the number of classes. The class label 
was determined by the class associated with the clas-
sifier that produced the largest signed distance in the 
task class associated side of the hyperplane. A general 
overview of the applied FBCSP method is presented in 
Figure 6.

Figure 5. Placement of the EEG and ground electrodes (reference electrode was placed to the right earlobe).
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2.4.2. Decoding accuracy calculation with cross- 
validation for the offline studies
DA for the offline studies (studies 1 and 2) was calcu-
lated using an inner-outer (nested) cross-validation 
(CV) (Supplementary Figure 1). The inner-outer CV 
guarantees that the test data used for the outer level 
CV were not used in the inner level for hyperparameter 
optimization. Further details of the inner-outer CV are 
described in [71]. All DA values were compared to the 
real (empirical) chance level [72] which was calculated 
using a significance level of p < 0.01.

For studies 1 and 2, six outer folds and five inner folds 
were assigned. During the inner fold CV, the optimal 
architecture (resulting in the highest DA) denoted the 
number of the selected CSP filter pairs (2, 3, or 4), the 
number of the quantization levels for the mutual infor-
mation (MI) features selection module (2, 3, or 6), the 
number of the selected features at the output of the MI 
module (6, 10, 14, or 18), and the optimal width of the 
classification window (500 ms, 1s, or 2s).

The cross-participant/session averaged time-varying 
DA for both offline studies was calculated and plotted 
using outer-level test results obtained from multiple 
single-session analyses.

A Wilcoxon non-parametric test was performed to 
compare the significance of the difference in DA peaks 
obtained in the task period and reference (baseline) 
period, i.e. the pause period before the target object 
was displayed on the screen.

2.5. BCI calibration for the online studies

The BCI configurations used in the online sessions 
(studies 3 and 4) were calibrated using a multi-session 
dataset recorded in sessions conducted before the cali-
bration. Results from studies 1 and 2 showed that the 
four lower (delta, theta, mu, and low-beta) EEG bands 
made a greater contribution to the DA compared to the 
high-beta and low-gamma bands. Therefore, in studies 3 
and 4, the EEG bands used in the FBCSP module were 
limited to the four lower (delta, theta, mu, and low-beta) 
bands. Moreover, using the experience of studies 1 and 2 
and knowledge gained around which hyperparameters 
produced maximum DA, in studies 3 and 4 the number 
of selected CSP filter pairs was set to 2 and the number 
of quantization levels was set to 3. The number of 
features that could be selected by the MI module was 
selected from 6, 8, and 10 and the width of the classifi-
cation window was selected from 1s and 2s.

To improve the cross-session stability of the calibrated 
BCI, the single-session-based FBCSP calibration (used in 
studies 1 and 2) was replaced with a cross-session test 
based FBCSP calibration. In the first step, the BCI was 
calibrated based on a single-session dataset using each 
combination of denoted hyperparameter options, sepa-
rately, with the six-fold CV (Supplementary Figure 2) 
which is equivalent to a simple outer-level CV. The 
time-varying DA graphs resulting from the single-session 
six-fold CV were plotted for each BCI configuration and 
compared by visual inspection. The BCI configurations

Figure 6. Filter-bank common spatial patterns (FBCSP) based multi-class classification method. The block diagram illustrates the 
structure of the FBCSP-based multi-class classification method using mutual information (MI) selection and linear discriminant analysis 
(LDA) based classifier. The number of the bands and selected features were different in offline studies 1–2 and online studies 3–4 
(described in the text body).
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resulting in a reasonably high DA peak in the task interval 
(compared to the DA peak obtained from other BCI 
configurations) were noted for the cross-session test. In 
the cross-session test, the DA was calculated for each 
session, which was not used for calibrating the tested 
BCI configuration. Thus, in studies 3 and 4, the six-fold 
CV-based BCI calibration formed the inner level of the 
CV, and the cross-session test formed the outer level of 
the CV. BCI configurations were ranked by visual inspec-
tion for each participant separately, comparing DA peaks 
obtained from multiple sessions with the cross-session 
test. The best-ranked BCI configuration was used in the 
first online session of the participant. In the online BCI, 
the delay between the onset of the task and the classifica-
tion time was set to the time between the onset of the task 
and the DA peak obtained in the cross-session test.

Table 3 summarizes the sessions used to calibrate and 
test the classifiers.

2.6. Online signal processing

The online multi-class classification was performed in 
Simulink [63] using the calibrated BCI. Studies inves-
tigating the impact of unbiased real-time feedback 
show that negative feedback has a significant impact 
on accuracy during online task performance. The 
influences of positive and negative visual feedback on 
motor imagery task performance using EEG and elec-
trocardiography (ECG) have been studied [73]. The 
findings suggest that over-biased negative feedback 
causes mental stress that is detected in the form of 
significantly higher heart rate variability compared to 
sessions where over-biased positive feedback was pre-
sented – and accuracies correlate with the polarity 
(-/+) of the biased feedback. Alimardani et al. [74] 
studied EEG-based BCI-operated human-like robotic 
hands using imagined grasp or squeeze motions. They 
evaluate participants’ performance under different 
presentations of feedback including: (1) non-biased 
direct feedback, (2) biased feedback corrected to fake 
positive 90% accuracy, and (3) biased feedback cor-
rected to fake negative 20% accuracy. Participants 
achieved better accuracy when they received fake posi-
tive feedback, while fake negative feedback resulted in 

a decreased performance. These results were consid-
ered in the study for online visual feedback. When the 
classification was ‘successful’, the decoded (correct) 
object was displayed during the feedback period. 
However, if the classification was incorrect, there was 
a 33% chance (biased-positive feedback) that the cor-
rect object would be displayed rather than the decoded 
object. It is important to note that DA values pre-
sented in this paper were calculated based on ‘success-
ful’ classifications rather than the displayed (biased) 
result, which may be positively biased.

2.7. Temporospatial spectral analysis

To identify frequency bands and cortical areas that 
provided the most separable features, an analysis was 
performed using the multi-session datasets and invol-
ving CSP filters and the MI weights of the FBCSP 
classifiers calibrated. This analysis was performed sepa-
rately for every session and participant. For the time- 
varying frequency analysis, the mean values of MI 
weights (that weight the DA contribution of the features 
of the 2 class classifiers) were calculated in each ana-
lyzed frequency band and time point, separately, and 
were plotted in the form of participant-specific topogra-
phical maps. For the topographical analysis, all trans-
formation values in each CSP filter were multiplied with 
MI weights obtained for the corresponding CSP filter at 
the time matching the maximal DA.

2.8. Cross-study statistical analysis

A cross-study analysis was performed to examine differ-
ences in the DA values achieved in each session for studies 
1 and 2, compared to those achieved for studies 3 and 4. 
This analysis was performed to establish whether there was 
a statistically significant improvement in DA scores when 
feedback was included in the paradigm. The Mann- 
Whitney U test was chosen to compare mean ranks, due 
to the small and unequal data samples. Only sessions where 
the maximum DA obtained in the task period differed 
significantly from DA in the reference (baseline) period 
were included in the analysis. Furthermore, to ensure the 
independence of observations, one participant’s dataset

Table 3. Sessions used for calibration, stability test, application, and re-calibration of the online BCI.

BCI calibration Stability test
Online 

application
BCI 

re-calibration
Online 

application

Preparing BCI 
configuration 1

Stability of BCI 
configuration 1

Using BCI 
configuration 1

Preparing BCI 
configuration 2

Using BCI 
configuration 2

Study 3 Offline 1–7 Offline 8 Online 1–5 Online 6–7
Study 4 Offline 1–2 N/A Online 1–2 Online 3
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was excluded from the cross-study analysis as the partici-
pant had completed study 2 and study 4, both of which 
were in separate independent groups for the analyses.

3. Methods summary

An overview of the calibration, cross-validation, and eva-
luation methods applied to studies 1–4 is presented in 
Figure 7.

4. Results

4.1. Results of studies 1–2

Figure 8a-d provides an overview of participants’ per-
formance by presenting time-varying DA plots and sig-
nificant peak DA values obtained for study 1 in a single 
offline session, and for study 2 in three offline sessions. 
The cross-participants/session averaged time-varying 
DA for both studies are presented in Figures 8a and 
8c, respectively, while participant/session-specific dif-
ferences in time-varying DA plots for study 2 are pre-
sented in Figure 8d. As indicated in Figure 8b, seven of 

ten participants in study 1 and each of the three parti-
cipants in study 2 achieved DA peaks during the task 
period which were significantly higher than the DA 
peak obtained during the corresponding pause period 
(Wilcoxon non-parametric test, p < 0.05). The maxi-
mum peak DA in study 1 was achieved by participant 
6 (33 ± 4%), and in study 2 by participant 3 (37 ± 3%). 
Cross-participants/session averaged frequency maps 
and object-specific topographical maps (Figure 8e) indi-
cate that for participants who achieved a DA > 30% 
(empirical chance level = 20 ± 6%), the 1-4 Hz (delta) 
and 4-8 Hz (theta) oscillations in frontal, posterior par-
ietal and occipitotemporal cortical areas provided the 
highest contribution for offline classification of five 
imagined 3D primitive objects.

4.2. Results of study 3

Figure 9a provides an overview of significant DA peak 
values obtained using datasets acquired for two partici-
pants in (1): seven offline sessions (used for BCI cali-
bration), (2): one additional offline session recorded

Figure 7. Overview of calibration, cross-validation, and evaluation methods applied to studies 1–4.
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Figure 8. Results of studies 1–2. (a): grand average (thick curve) and cross-fold standard deviation (STD) (shaded area) of time-varying DA 
calculated in studies 1 and 2 using six folds. (b): peak DA values (thick black lines in green columns) and the corresponding cross-fold STDs 
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with a two-week gap after the seventh offline session 
(used for offline DA stability check), and (3): seven 
online sessions (of which the first five were used for 
BCI recalibration) (Table 3). Figure 9a1 presents the 
mean values and standard deviations of cross-session 
DA peak values obtained for BCI configurations cali-
brated using datasets acquired in offline sessions 1–7 
(initial calibration) and online sessions 1–5 (recalibra-
tion). Furthermore, Figure 9a2 presents DA peak values 
obtained from the cross-session stability test using the 
initial and recalibrated online BCI configuration 
selected from the single-session-based calibration pre-
sented in Figure 9a1.

The cross-session stability test, using datasets 
acquired in offline sessions 1–7, indicates an increasing 
trend of DA peak values obtained over sessions 1 to 7, 
ranging from 25% to 34% for participant 1 and from 
25% to 35% for participant 2. The long-term cross- 
session stability test, using data acquired in offline ses-
sion 8, shows a slightly decreased DA peak (30% for 
participant 1 and 33% for participant 2) compared to 
that achieved two weeks earlier in offline session 7. 
However, DA in session 8 is higher than that achieved 
in the first two offline sessions (≈26%).

During the first online session, both participants 
failed to achieve above chance level performance (DA 
peak in the task period was similar to the DA peak 
obtained in the pause period; Wilcoxon non-parametric 
test, p > 0.05). However, during the last two online ses-
sions, using the recalibrated BCI, the participants 
reached a personal online DA maximum of 29% and 
32% (participants 1 and 2, respectively) (empirical 
chance level 20 ± 6%).

The participant-specific frequency maps of CSP-MI 
weights at the corresponding DA peak (Figures 9b and 
9d) for both participants indicate that the 1-4 Hz (delta) 
band provided a maximal contribution for encoding the 
imagined objects. It is worth noting that, as expected, 
the highest values of CSP-MI weights were obtained at 
times which correspond with the peak DA.

The participant-specific topographical maps of MI- 
weighed CSP patterns (Figure 9b2 and Figure 9d2) 
indicate that frontal, posterior parietal, and occipito-

temporal cortical areas provided the highest contribu-
tion for both offline and online trials. As expected, the 
MI-weighed CSP patterns show higher DA contribu-
tions in task-related cortical areas compared to patterns 
obtained during pause periods.

Finally, participant-specific time-varying cross-ses-
sion DA plots were obtained from: (1) long-term stabi-
lity tests (Figure 9c1), (2) the averaged curves and 
standard deviation of time-varying DA graphs obtained 
from online sessions 1–5 (Figure 9c2), and (3) partici-
pant/session-specific time-varying DA obtained from 
online sessions 6 and 7 (Figure 9e); indicates that max-
imal DA (peak DA) for both participants was achieved 
with a latency that matches the latency observed during 
BCI calibration in cross-session CV.

4.3. Results of study 4

Results obtained in study 4 (Figures 10 and 11) are 
similar to those obtained in the pilot online study 
(study 3), even though the number of both offline and 
online sessions in study 4 was only half of those com-
pleted in study 3.

Figure 10a presents an overview of significant DA 
peak values obtained for four participants in offline 
sessions 1–2 (used for initial calibration of the BCI), 
online sessions 1–2 (based on the BCI that was cali-
brated based on offline sessions 1–2), and in online 
session 3 (using the BCI that was recalibrated based on 
online sessions 1–2).

Single-session CV results presented in Figure 10a1 
provide a summary of DA rates from the sessions that 
were selected for calibrating/recalibrating the BCI 
(based on cross-session CV results). Cross-session CV 
results of the calibrated/recalibrated BCIs are presented 
in Figure 10a2. DA values presented in Figure 10a3 
indicate that the online DA for each participant 
increased over the three online sessions. For each parti-
cipant DA in online session 1 picked a value in the range 
of the empirical chance level 20 ± 6% while in online 
session 3 reached 28%, 32%, 23%, 32% for subjects 1–4, 
respectively. Participant/session-specific time-varying 
DA plots (presented in Figure 10b) indicate for online

(green columns) for each subject of studies 1 and 2. Subjects/sessions achieved a DA peak in a similar range with DA during the pause 
(Wilcoxon non-parametric test, p >0.05) are indicated with ‘N/A’). The bottom panel of (B) displays DA values for each subject and session 
of study 2, separately. (C): grand average (thick curve) and cross-subject STD (shaded area) of time-varying DA calculated in studies 1 and 
2. (D): subject-specific time-varying DA plots from each session of study 2. (E): cross-subject averaged frequency and topographical maps 
indicating frequency bands and cortical areas providing the highest contribution to DA. The cross-subject averaged frequency and 
topographical maps are derived using CSP filters and MI weights of subject-specifically calibrated BCIs using subjects/sessions which 
provided DA peak above 30% (i.e. using only those subject/session combinations for which the thick black lines in green columns of (B) 
indicate a DA above 30%).

BRAIN-COMPUTER INTERFACES 13



Figure 9. Results of study 3. (a): significant DA values from study 3. (a1): cross-session CV results. The mean value (thick black lines in 
green columns) and STD (green columns) of peak DA rates obtained from cross-session CV are presented for each session, separately. 
The session ID that was selected for calibrating the final BCI is marked with a rectangle below the DA chart. (a2): detailed results of the 
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sessions that the DA peak for each participant was 
achieved near the time where it was expected following 
the onset of the task. However, the DA peak was slightly 

higher (30%, 33%, 25%, 34% for subjects 1–4, respec-
tively) compared to that obtained at the denoted time of 
the online classification.

offline cross-session stability test (i.e. DA rates obtained in test sessions of the best performing BCI configuration selected based on 
(a1)), furthermore, DA obtained in offline session 8, and online sessions 1–7 using the BCI configuration selected based on offline 
sessions 1–7. (b) and (d): results of an analysis investigating the subject-specifically calibrated BCI, calibrated based on offline sessions 
1–7 and online sessions 1–5, respectively. (b1) and (d1): time-varying DA plots (an averaged curve (thick blue curve) and STD (shaded 
area)) resulted from cross-session CV during BCI calibration. (b2) and (d2): frequency bands and cortical areas with the highest DA 
contribution based on CSP filters and MI weights of the calibrated BCI. (c) and (e): subject-specific time-varying DA plots obtained 
using the BCI, which was calibrated based on offline sessions 1–7 and online sessions 1–5, respectively (c1: long-term stability test 
results from offline session 8, C2: the average and standard deviation of time-varying DA from online sessions 1–5, e1 and e2: time- 
varying DA from online sessions 6 and 7). The expected position of peak DA is indicated with a black vertical solid line in the task 
interval of the time-varying DA plots and frequency maps.

Figure 10. Overview of decoding accuracy achieved in studies 4. (A): significant DA values from study 4. (A1): single-session CV results 
of subject-specifically calibrated BCIs providing the highest DA in cross-session CV. The mean value (thick black lines in green columns) 
and STD (green columns) of peak DA rates obtained from the single-session CV are presented for each subject, separately. (A2): cross- 
session stability test results of subject-specifically calibrated BCIs providing the highest DA in cross-session CV. (A3): DA rates achieved 
by the subjects 1–4 in online sessions 1–3. (B): subject-specific time-varying DA plots from online sessions 1–3. The expected position 
of peak DA is indicated with a black vertical solid line in the task interval of the time-varying DA plots. DA peaks obtained in a time 
interval matching visual perception and mental imagery periods are indicated with VP and MI labels in time-varying DA plots, 
respectively (DA values plotted in (B) are calculated using a 1s classification window prior the plotted DA values occurs around +500  
ms shift in the peak DA compared to the mid-point of the classification window).
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The participant/session-specific frequency maps of 
CSP-MI weights (Figure 11) were calculated based on 
the results of single-session analyses for each online 
session. The results confirm that the 1-4 Hz (delta) 
band (in some cases along with the 4-8 Hz (theta) 
band) provides the highest contribution to DA of the 
imagined object classification.

The participant/session-specific topographical maps of 
MI-weighted CSP patterns (Figure 11) confirm that fron-
tal, posterior parietal and occipitotemporal cortical areas 
provided the greatest contribution to the online classifica-
tion of the five imagined 3D primitive objects from EEG.

4.4. Results of the cross-study statistical analysis 
and offline vs. online scenarios

Feedback was not provided in studies 1 and 2, while 
initial sessions without feedback in studies 3 and 4 were 

followed by sessions that provided online feedback. A 
preliminary comparison was made between the com-
bined first offline (no-feedback) sessions from studies 3 
and 4 and the combined first sessions from studies 1 and 
2, to determine if initial differences in performance 
existed that could be attributed to variations in partici-
pant performance as a function of group assignment. 
The analysis did not yield a significant difference, indi-
cating homogeneity in initial performance ability across 
studies (U = 18, Z = −0.29, p = 0.77, Figure 12).

Subsequently, to determine the impact of an 
increased number of sessions with and without feed-
back, DA scores for studies 1 and 2 combined were 
compared against DA scores for studies 3 and 4 (with 
and without feedback) combined. The mean rank of DA 
values for studies 3 and 4 was found to be significantly 
greater than those for studies 1 and 2 (U = 121, 
Z = −2.73, p = 0.006, Figure 12).

Figure 11. Results of subject-specific frequency and topographical analyses for studies 4. The frequency and topographical maps, 
using CSP filters and MI weights of the calibrated BCIs, indicate frequency bands and cortical areas providing the highest DA 
contribution. DA from the single-session CV of the analyzed BCI configuration is indicated below the topographical maps. Panels 
presenting results of a BCI configuration that provided DA > 30% in single-session CV (figure 10A1) are highlighted with a bold frame.

16 A. KORIK ET AL.



Given the difference in DA was found to be sig-
nificant, a follow-up analysis was run to compare DA 
scores for studies 1 and 2 against DA scores for 
combined sessions from studies 3 and 4 in two ways: 
(1) without feedback only, and (2) with feedback only; 
to determine whether the provision of feedback sig-
nificantly improved performance. The alpha level was 
adjusted to 0.025 to control the false discovery rate 
given these two post hoc comparisons. For the com-
parison of runs without feedback, the mean rank of 
DA scores achieved in studies 3 and 4 was not found 
to be significantly greater compared to those achieved 
in studies 1 and 2 (U = 68, z = −2.02, p = 0.043 
(>0.025), Figure 12). However, the results for the 
comparison of DA scores, when feedback was pro-
vided indicated that the mean rank of DA values in 
feedback sessions in studies 3 and 4 was significantly 
greater than those achieved in studies 1 and 2 (U = 53, 
Z = −2.85, p = 0.004 (<0.025), Figure 12).

A comparison of DA values which were used for the 
cross-session analysis is presented in Figure 12.

5. Discussion

To date, only a limited number of offline studies have 
focused on decoding mentally imagined real-word 
objects [16] or the shape of primitive objects [17–19] 
from EEG. However, none of these studies used an 
online scenario providing real-time feedback from the 
actual DA.

The studies presented in this paper, not only 
intended to evaluate the separability of five imagined 
3D primitive objects (sphere, cone, pyramid, cylin-
der, and cube) from EEG using an offline scenario 
(studies 1–2), but also to evaluate if closed-loop BCI 
training could improve separability using a multi- 
session experimental paradigm with gamified feed-
back (studies 3–4), and to identify frequency bands 
and cortical areas providing a maximal contribution 
for decoding imagined objects from EEG. Our results 
show that:

● Significant DA, above empirical chance level per-
formance, is feasible.

● The addition of feedback to the experimental para-
digm, over multiple sessions, enhances performance.

● Prominent frequency bands are primarily 0-4 Hz 
(delta) and secondarily the 4-8 Hz (theta) 
oscillations.

● Prominent activations during shape imagery are 
observed in the frontal, posterior parietal, and occi-
pitotemporal cortex.

5.1. Decoding accuracy and multi-session learning 
process

In our offline pilot studies (studies 1 and 2), ten of 
thirteen participants achieved a DA peak during the 
task period, which was significantly higher than the

Figure 12. Comparison significant DA values for the cross-session analysis. Colored dots displayed in the boxplots indicate DA peaks in 
the task period which were significantly higher compared to DA obtained in the corresponding reference (baseline) period. Sessions 
without feedback are indicated as offline sessions. Sessions with feedback are indicated as online sessions, the box extends from the 
lower to upper quartile values, with a line at the median. The whiskers extend from the box to show the range of displayed DA values. 
p values obtained from the Mann-Whitney U tests are also presented.

BRAIN-COMPUTER INTERFACES 17



DA peak obtained in the pause period (Wilcoxon non- 
parametric test, p < 0.05). The significant DA peak for 
these ten participants ranged between 27.1% and 37.1% 
(Figure 8b). In study 3, an increasing trend of cross- 
session DA values was detected in a comparison 
between the BCI when calibrated using data acquired 
from an early session vs a later session for both partici-
pants (see offline session 1–7 in Figure 9a1). It is impor-
tant to note that the peak DA during online sessions was 
not only significantly higher than the empirical chance 
level (20 ± 6%) but the DA peak occurred with the same 
latency following the onset of the task as observed on 
cross-session CV tests, performed during the BCI cali-
bration process. (See the relation of the DA peak and the 
denoted classification time indicated with a black verti-
cal solid line during the task period in the time-varying 
DA plots in Figures 9 and 10). The DA for both offline 
and online session groups increased over sessions. 
Despite the stability of the BCI (confirmed in the long- 
term stability test, Figure 9a2) and the fact that the 
offline and online paradigms followed the same sce-
nario, the DA for all participants in studies 3 and 4 
dropped significantly in the first online session com-
pared to the DA obtained in the last offline session, 
which took place some days prior to the first online 
session (Figure 9a2 and Figure 10a2-A3). This observa-
tion may relate to an initial adaptation of the feedback 
and/or frustration caused by misclassification.

The DA trends achieved in the online sessions of 
studies 3 and 4 (Figure 9a2 and Figure 10a3) show a 
positive learning process for all participants, during 
which they learned to use a participant-specifically cali-
brated BCI more effectively. Despite the overall perfor-
mance being relatively low compared to other types of 
imagery (e.g. motor imagery), the results indicate that a 
multi-session learning process using a closed-loop sce-
nario provides an opportunity for the user to improve 
performance.

It is important to note that the distribution of the 
data and features commonly change significantly over 
the participant’s learning process due to the following 
reasons. First, the user’s strategy to attempt to control 
the BCI commonly changes during a multi-session 
learning period. Second, the task-specific neural activity 
pattern changes significantly when the participant 
learns to control the BCI [74]. The results of the online 
experiments also call attention to the importance of an 
adequately scheduled recalibration of the BCI: in both 
online studies (study 3 and 4), after the BCI re-calibra-
tion, the online DA increased significantly for most 
participants (see an increase in DA for study 3 in 

Figure 9a2 between online sessions 5 and 6; for study 4 
in Figure 10a3 between online sessions 2 and 3).

It should be noted that the highest single session CV 
accuracy (DA = 51 ± 7%) presented in this paper was 
achieved by participant 2 in study 4, i.e. where the 
subject had completed the most sessions with biased 
feedback. However, as this accuracy was achieved dur-
ing offline recalibration of the BCI using a dataset 
recorded in this participant’s final online session, the 
online performance of this BCI configuration was not 
tested. Nevertheless, this result is an example of the 
possible improvement over time by the user mutually 
learning with the BCI, as well as the potential of the 
paradigm to enable primitive 3D object decoding 
from EEG.

5.2. Cross-study statistical analysis and offline vs 
online scenarios

The cross-study statistical analysis first established that 
initial performance ability was homogenous, as indi-
cated by the results of the comparison between the 
combined first offline (no-feedback) sessions from stu-
dies 3 and 4 and the combined first sessions from 
studies 1 and 2 (all offline), which was not significant 
(p = 0.77). Following this, we determined that perfor-
mance in studies 3 and 4 was generally improved com-
pared to performance in studies 1 and 2 (p = 0.006). 
Considering that studies 3 and 4 involved several ses-
sions for each participant, as opposed to studies 1 and 2 
(which involved one and three sessions, respectively), 
both offline (without feedback) and online (with feed-
back), it was important to analyze the impact of (1): 
increased sessions, and (2): feedback sessions separately 
to determine the effect of feedback sessions alone.

Regarding the former effect, the mean rank of DA 
scores achieved in studies 3 and 4 offline (no-feedback) 
sessions was not found to be significantly greater com-
pared to those achieved in studies 1 and 2, at the 
Bonferroni-adjusted alpha level of 0.025, for two post 
hoc tests (U = 68, Z = −2.02, p = 0.043). Therefore, 
despite an increase in the number of offline sessions, 
performance did not improve significantly. In contrast, 
the results for the comparison of study 3 and 4 feedback 
sessions with study 1 and 2 sessions (without feedback) 
revealed the mean rank of DA values achieved in feed-
back sessions in studies 3 and 4 was significantly greater 
compared to those achieved in the no-feedback studies 1 
and 2 (U = 53, Z = −2.85, p = 0.004, given the 
Bonferroni-adjusted alpha level of 0.025). This
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significant improvement attributable to the influence of 
feedback is a strong indicator that real-time feedback 
during shape imagery improves separability of neural 
modulations and enhances decoding accuracy, and that 
participants can learn to improve performance in shape 
imagery to modulate brain activity.

5.3. Visual perception vs mental imagery

fMRI studies show that visual perception and mental 
imagery are associated with similar patterns [37–42]. As 
in our experimental paradigms, prior to the object ima-
gery task, the target object is presented on the screen. 
Therefore, it is important to investigate if the results of 
the object classification were linked to the neural activ-
ity involving perception (prior to the imagery task) or 
related to the object imagery task. Time-varying DA 
plots with a reasonably high DA sometimes indicate 
two DA peaks; a smaller (non-dominant) DA peak at 
the end of the 1s period when the target object was 
displayed on the screen, and a significantly higher 
(dominant) DA peak matching time interval of the 
task period (indicated with VP and MI labels respec-
tively in Figure 10b). Assuming that visual perception 
and mental imagery rely on similar patterns, it is logical 
to suppose that the smaller peak at the end of the display 
period may rely on the visual perception of the dis-
played target object, while the dominant peak in task 
interval is a result of the mental imagery task. The delay 
between the onset of perception and VP peak, and 
between the onset of the mental imagery task and MI 
peak, originates not only from biological factors such as 
the reaction time but also the size of the classification 
window that was optimized participant specifically (i.e. 
1s or 2s).

5.4. Frequency and topographical analysis

The frequency and topographical analyses aimed to 
identify frequency band(s) and cortical area(s) involved 
primarily in mental imagery (imagined visual represen-
tation) of 3D primitive objects.

The frequency analysis performed for studies 1–4 
showed clear evidence that the 0-4 Hz (delta) oscilla-
tions (for some participants along with the 4-8 Hz 
(theta) oscillations) provided the highest contribution 
to the classification of the five primitive objects from the 
EEG recorded during both offline and online sessions. 
Furthermore, the topographical analysis indicated that 
the frontal, posterior parietal and occipitotemporal cor-
tical areas have an important role in object imagery 
(Figures 8e, 9b2, Figure 9d2, Figure 11). It is important 
to highlight that BCI configurations which provided the 

highest accuracy in single-session CV (DA > 30%, 
empirical chance level 20 ± 6%) also provided a sharper 
separation of cortical areas involved in object imagery 
task performance (panels highlighted with bold frame in 
Figure 11) compared to BCI configurations with which 
a lower level of DA was achieved (panels without bold 
frame in Figure 11). The object-specific similarities/dif-
ferences of topographical maps were analyzed using a 
dataset from studies 1–2 (Figure 8e), indicating that 
imagery of the five analyzed objects generates similar, 
or overlapping, cortical activity patterns. As individual 
brain activity has a wide range of variability [75], an 
analysis studying participant-specific variability of 
object-specific cortical activity patterns generated dur-
ing imagery of different 3D primitive objects may be an 
objective in future work. The results obtained from 
topographical analyses are in line with fMRI studies. 
For example, Stokes et al. [32] show an important role 
of the visual cortex in shape-specific mental imagery. 
Furthermore, in line with our results, the object-related 
mental imagery contribution of the occipitotemporal 
cortex [48] as well as the frontal and parietal cortex 
[50] has been reported.

Our result regarding the importance of delta oscilla-
tions in the decoding of the shape of imagined objects is 
supported by a recent study by Sburlea et al., 2021 [76], 
the results of which indicate that low-frequency EEG 
not only encodes information about properties of grasp-
ing movements but also the shape and size of the 
grasped objects. Regarding object imagery EEG studies, 
Chew et al. [77] report a maximal decoding accuracy of 
80% (theoretical chance level 50%) for the binary classi-
fication, based on whether the user aesthetically liked or 
disliked the presented object. The features for their 
KNN-based classifier were extracted from 1-4 Hz 
(delta), 4-8 Hz (theta), and 8-13 Hz (alpha) bands but 
features from the 13–30 Hz (beta) and 30–49 Hz (low 
gamma) bands were omitted. Although this result sup-
ports our findings showing that low-frequency EEG 
oscillations (from the delta and in some cases the theta 
band) encode maximal information from the shape of 
an imagined 3D primitive object, the aesthetic percep-
tions might not rely on the same neural circuits as the 
shape of imagined objects.

5.5. Limitations

Our research aimed to develop an online BCI to decode 
five imagined 3D primitive objects and show that real- 
time feedback enhanced decoding accuracy. The online 
DA in the final session reached an average 35%, which is 
significantly above the empirical chance level (20 ± 6%), 
and the performance of participants who received
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multiple feedback sessions was significantly higher (p <  
0.004) than the performance of those who participated 
in only one session and had no feedback. However, the 
decoding accuracy values are not sufficiently high to 
enable reliable real-time intended shape selection using 
a BCI. Nevertheless, it can be seen that in studies 3 and 4 
performances are improving with feedback for all parti-
cipants. Moreover, the highest offline result (DA = 51 ±  
7%) across the study is achieved in study 4 by subject 2 
in the final session. This observation again suggests the 
gamified paradigm and feedback have impacted the 
performance. Further training and gamification to 
enhance training may, therefore, improve the results 
and produce a BCI which could be used functionally 
with shape imagery alone. The results also suggest that 
hybridizing imagery strategies to include, for example, 
motor and shape imagery may increase the potential for 
shape imagery to be used.

For the first time, our results show that DA can be 
enhanced with real-time feedback in a multi-session 
scenario and a gamified paradigm. We can report that 
multiple feedback sessions enhance performance. 
However, we cannot conclude that positively biased 
feedback and/or gamification improved performance 
any more than unbiased and/or gamified feedback, as 
we do not have control groups for the latter. Future 
work should consider controlling for these measures to 
gain a better understanding of the effects of various 
types of feedback on shape-imagery BCI performance.

In an offline study, Llorella et al. [19] classified seven 
simple 2D geometric objects, achieving an average off-
line DA of 35.1 ± 7.0% (theoretical chance level 14.3%) 
using a convolutional neural network for feature selec-
tion which would indicate slightly better average per-
formance with the CNN (7 shapes in [19] vs 5 in this 
study). However, in [19] the stimuli are different (sam-
ple line drawing of shape in [19] vs 3D shape imagery in 
this study) which could account for observed differences 
in accuracy. Additionally, in [19] a 2-class analysis 
shows that maximal DA is achieved with line vs paral-
lelogram which are two shapes with maximum appear-
ance distinction, suggesting that the types of stimuli/ 
cues for shape imagery significantly impact results. This 
observation is further supported in another study by 
Llorella et al. [16] showing offline classification of four 
real-world objects (tree, house, plane, and dog) plus the 
relaxation state obtained a DA of 60.5% (theoretical 
chance level 20.0%), again using CNN. Further exten-
sive research is needed to determine optimal combina-
tions of shapes and indeed the influence of shape and 
signal processing strategy. A global search of the para-
meter space using advanced data-driven deep learning 
approaches may indeed find optimal features for shape 

imagery classification as suggested by the results in 
Llorella et al. [16]. The machine learning approach 
applied in the study is constrained in terms of the search 
space and optimal frequency band, number of spatial 
filters and a relatively simple classifier.

We recently demonstrated in Cooney et al. [78] that 
classification of six imagined words (theoretical chance 
level 16.7%) and five imagined vowels (theoretical 
chance level 20.0%) was enhanced by CNN frameworks 
(Shallow, Deep, EEGNet), achieving significantly higher 
DA (p < 0.0001) compared to a FBCSP-RLDA frame-
work (words: 21 ± 2%, vowels: 26 ± 2%), similar to that 
applied in this study. These results were further 
improved using EEG and fNIRS fusion or alternative 
words and word pairing arrangement. Therefore, in 
future work, we will investigate replacing our FBCSP- 
based classifier with a CNN-based framework for ima-
gined object classification and optimizing the type of 
images.

Here, we also note that although the number of 
participants for almost every study presented in this 
paper was relatively low: studies 1 (N = 10), study 2 (N  
= 3), study 3 (N = 2), and study 4 (N = 4), the overall 
number of the participants involved in the four inter-
dependent studies was sixteen (from which three parti-
cipated in more than one study, Supplementary Table 
1). There were 69 sessions in total of which 26 sessions 
were online with real-time feedback (involving 15,480 
trials for offline and at least 6,840 trials for online ses-
sions in total) which is a relatively comprehensive 
assessment of the paradigm and sufficient to demon-
strate statistically the impact of feedback on BCI perfor-
mance. This approach of adapting the study design and 
evaluating each new study with a limited number of 
participants was efficient and effective in testing our 
hypothesis. However, in future studies, we shall under-
take a single experimental protocol with many partici-
pants rather than mixing participation across multiple 
interdependent studies. Here, we note that the number 
of trials in online sessions of study 3 was not fixed 
because participants were permitted a second attempt 
to make the correct response to the failed tasks (more 
details in Section 2.2.2). Topographical and frequency 
maps obtained in studies 1–4 demonstrated similar 
brain activity patterns across participants during object 
imagery task performance, suggesting the combined 
results obtained from the four interdependent studies 
in the series can be taken as a whole. With the various 
observations enabled by modifications across the study 
series, significant progress has been made toward 
designing a larger trial with optimal stimuli, gamifica-
tion and signal processing strategies to determine if 
participants can learn to modulate brain activity
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through shape/object imagery sufficiently to achieve 
accuracies that are possible in other imagery paradigms, 
as shown in our recent study in 2022 [79] and by 
Bigitiomana et al., 2020 [80].

Notably, the DA in the final experimental paradigm 
(study 4) for each of the four participants showed an 
incremental increase over three online sessions using 
visual feedback, reaching the highest online accuracy 
(DA = 35%) during the last session. However, as these 
results were obtained only for four participants using 
three online sessions, the increased trend in the DA 
which was detected over three online sessions should be 
confirmed in future work with more participants using a 
longitudinal multi-session scenario, as it has similarly been 
demonstrated in a longitudinal study based on Cybathlon 
results in our recent publication [79]. Building on work 
reported by Pidgeon et al. 2016 [25] and Hay et al. 2019 
[26] – Duffy et al., 2019 [81] investigating design ideation 
and the potential for future BCI technologies to support 
design ideation. For example, providing neurofeedback to 
allow designers to moderate their thought processes or 
allowing them to realize their imagination seamlessly in 
digital environments. Recent results by Campbell et al., 
2020 [82] involving designers ideating on complex design 
tasks during fMRI show various brain regions are activated 
and may be associated with memory access, visual and 
motor imagery. For example: (1) a region of interest in the 
para-hippocampal gyrus (−27,-34,-13) revealed significant 
design ideation-related coactivations with the left fusiform 
gyrus, lingual gyrus, inferior temporal gyrus and right 
cerebellum during design ideation; and (2): the left lingual 
gyrus ROI (−15,-43,-10) was found to have significant 
ideation related functional connectivity with clusters in 
the right lingual gyrus, as well as in the left superior frontal 
gyrus and bilateral cerebellum, indicating a significant 
connectivity with visual processing regions (lingual gyrus 
and fusiform gyrus). The results possibly reflect the inter-
play between long-term memory processes, visual and 
motor imagery during design ideation. Our work provides 
evidence that we can classify shape imagery when weight-
ing CSP features across a number of those regions. 
Ongoing work is focused on undertaking a detailed func-
tional connectivity analysis to determine more specifically 
the regions of activation and connectivity, but this is 
limited by the spatial resolution provided by our EEG 
montage.

Finally, we should note that BCI calibration trials 
contained artifacts (identified via visual inspection) 
were removed during the offline calibration method. 
However, the online frameworks applied to the present 
studies did not involve online artifact removal and, 
therefore, the results of the online sessions are demon-
strable of what would occur in an online setting. 

Automated artifact removal may indeed provide further 
enhancements to online object/shape imagery 
classification.

6. Conclusion

The research presented in this paper, involving ten 
participants in a single offline session (study 1), three 
participants in three offline sessions (study 2), two par-
ticipants in eight offline and seven online sessions 
(study 3), and four participants in two offline and 
three online sessions (study 4) – provides evidence 
that distinguishing imagined sphere, cone, pyramid, 
cylinder, and cube-based neural correlates in EEG is 
feasible and participants can improve shape imagery to 
modulate brain activity to enhance BCI performance 
when real-time feedback is provided.

Thirteen of sixteen participants achieved a DA of 30  
± 5% during the mental imagery task, significantly 
higher than the DA obtained during the corresponding 
pause period (Wilcoxon non-parametric test p < 0.05, 
empirical chance level 20 ± 6%). The performance of 
all participants improved with online feedback. To the 
best of the authors’ knowledge, this is the first study to 
provide real-time feedback across multiple sessions 
involving mental imagery of five 3D primitive objects. 
The best single-session CV test accuracy was achieved 
by participant 2 of study 4, when the classifier was 
trained and tested using a dataset recorded in the last 
(third) online session (DA = 51 ± 7%, empirical chance 
level 20 ± 6%). This result suggests that it may be feasi-
ble to reach accuracy levels that would enable functional 
use with this type of BCI and extensive training. The 
evolution of the paradigm involving gamification and 
biased feedback may have also influenced engagement 
over sessions. We also showed that the features are 
stable through inter-session tests, where peak accuracy 
levels and time point of peak accuracy were consistent 
when classifiers were trained on one session and applied 
to later sessions. Recalibrating the BCI within the ses-
sion may enhance the results. Improvement in online 
DA over sessions indicates mutual learning capability 
between the BCI user and the BCI. An appropriately 
scheduled BCI recalibration regime and more advanced 
signal processing pipeline together with a longitudinal 
multi-session scenario may lead to improved accuracy.

Results of the frequency and topographical analysis 
indicate that the 0-4 Hz (delta) (for some participants 
along with the 4-8 Hz (theta)) oscillations in the frontal, 
posterior parietal and occipitotemporal cortex have an 
important role in the mental imagery of 3D primitive 
objects.
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In conclusion, although the performance of this BCI 
involving 3D object classification from EEG is likely to 
be too low to experience a feeling of reliable control or 
interaction, the results are a positive indication that with 
learning and real-time feedback these mental tasks, or a 
combination of these and other mental tasks, could be 
used for performing a mental-task-based operations in 
virtual spaces or cognitive aided engineering design 
using an online BCI. The low number of participants 
does, however, prevent us from assessing how general-
izable these results are, and further work is required to 
confirm this preliminary evidence.
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